簡易檢索 / 詳目顯示

研究生: 胡薩拉
Salal Hasan Khudaida
論文名稱: 含碳氫化合物之水溶液系統在較高溫下之多相平衡行為研究
Multiphase equilibrium behavior for aqueous systems with hydrocarbons at higher temperatures
指導教授: 李豪業
Hao-Yeh Lee
李明哲
Ming-Jer Lee
口試委員: 李豪業
李明哲
蘇至善
洪桂彬
C. S. Su
G. B. Hong
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 134
中文關鍵詞: VLEVLLEstatic-typetriethylene glycolphenolwaterC6-hydrocarbons
外文關鍵詞: VLE, VLLE, static-type, triethylene glycol, phenol, water, C6-hydrocarbons
相關次數: 點閱:185下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用總壓法量取由水、三乙二醇、環己酮與酚所組成之雙成份與三成分混合物的汽液相平衡數據,量測溫度為333.2 K、363.2 K、393.2 K與418.2 K,這些混合物系統均無共沸物產生。本研究採用UNIQUAC模式關聯這些汽液平衡數據,計算結果顯示UNIQUAC模式可準確描述這些混合物的汽液相平衡行為。本研究也使用配備視窗之平衡釜的改良式靜態裝置,量測含苯、己烷、環己烷之雙成分與三成分水溶液系統的等溫汽液液平衡數據,溫度介於343 K 至 383 K之間。雙成分系統之 VLLE 數據能透過 NRTL-ideal、NRTL-HOC、UNIQUAC-ideal 和 UNIQUAC-HOC 等模型得到良好的關聯。然而,直接使用由雙成分數據所訂定的交互作用參數之汽液液平衡性質的預測值與實驗值有相對較大的偏差。本研究不僅提供新的相平衡數據,也有助於探討相關分離程序的較佳操作條件。


    In the present work, the total pressure method was used to measure the isothermal vapor-liquid equilibrium (VLE) data for the binary and ternary systems containing water, triethylene glycol (TEG), cyclohexanone, and phenol at 363.15 K, 393.15 K, 433.15 K, and 473.15 K. The experimental results exhibit no azeotropic behavior. The UNIQUAC model was applied to correlate all the VLE data. The calculated results reveal that the UNIQUAC model can accurately represent the VLE behavior for these investigated systems. A modified static-type apparatus equipped with a visual cell was also used in the present study to measure the isothermal vapor-liquid-liquid equilibrium (VLLE) data for the binary and ternary aqueous systems containing benzene, hexane, and cyclohexane over a temperature range of 343 K to 383 K. The binary VLLE data can be well correlated with the NRTL-ideal, NRTL-HOC, UNIQUAC-ideal, and UNIQUAC-HOC models. Relative large deviations were found as the binary interaction parameters determined from binary VLLE data were directly adopted to predict the ternary VLLE properties. The results of this study provide new phase equilibria data and are useful to explore better operating conditions for the related separation processes.

    摘要 I Abstract II Acknowledgments III Table of Contents V List of Tables VIII List of Figures X Nomenclatures XIV Chapter 1. 1 Introduction 1 1.1 Motivation for VLE study 1 1.2 Motivation for VLLE study 2 1.3 Vapor-liquid equilibrium calculation 4 1.4 Vapor-liquid-liquid equilibrium calculation 5 1.5 Phase equilibrium measurements 7 1.5.1 Analytic method 8 1.5.1-1 Isothermal analytic method 9 1.5.1-2 Isobaric analytic method 9 1.5.1-3 Isobaric-isothermal analytic method 10 1.5.1-4 Continuous flow method 10 1.5.1-5 Semi-flow method 11 1.5.2 Synthetic method 11 1.5.2-1 Visual synthetic method 12 1.5.2-2 Non-visual synthetic method 13 1.5.3 Miscellaneous methods 13 1.6 Objective of this study 14 1.7 Research outline 15 Chapter 2. 24 Experimental VLE and VLE Data Correlations 24 2.1 Materials 24 2.2 Apparatus 24 2.3 Experimental procedure 25 2.4 Experimental and data correlation results 26 Chapter 3. 38 Experimental Section for VLLE 38 3.1 Materials 38 3.2 Apparatus 39 3.3 Experimental procedures 40 3.4 Composition analysis 41 Chapter 4 …………………………………………………………………………..52 Experimental Results for VLLE 52 4.1 Phase equilibrium measurements for binary systems 52 4.2 Phase equilibrium measurements for ternary systems 53 Chapter 5. 73 Phase Equilibrium Calculation for VLLE 73 5.1 VLLE calculation 73 5.2 Binary VLLE data calculation 75 5.3 Ternary VLLE prediction 76 Chapter 6. 102 Conclusions 102 References 103 Biographical Data 113 List of Publications 114

    [1] P. E. Langley, Process for the production of phenol and acetone, U.S. Patent 4310712, January 12, 1982.

    [2] G. D. Yadav, N. S. Asthana, Selective decomposition of cumene hydroperoxide into phenol and acetone by a novel cesium substituted heteropolyacid on clay, Appl. Catal. A Gen. 244 (2003) 341–357. https://doi.org/10.1016/S0926-860X(02)00605-1.

    [3] P. S. Hudson, Process for production of phenol and cyclohexanone, U.S. Patent 4021490, May 3, 1977.

    [4] Y. Aoki, S. Sakaguchi, Y. Ishii, One-pot synthesis of phenol and cyclohexanone from cyclohexylbenzene catalyzed by n-hydroxyphthalimide (NHPI), Tetrahedron. 61 (2005) 5219–5222. https://doi.org/10.1016/j.tet.2005.03.079.

    [5] M. T. Musser, Cyclohexanol and cyclohexanone in ullmann’s encyclopedia of industrial chemistry, Wiley-VCH, Weinheim. 11 (2011) 49–60.

    [6] J. C. J. Bart, S. Cavallaro, Transiting from adipic acid to bioadipic acid. 1, petroleum-based processes, Ind. Eng. Chem. Res. 54 (2015) 1–46. https://doi.org/10.1021/ie5020734.

    [7] W. Li, L. Shi, B. Yu, M. Xia, J. Luo, H. Shi, C. Xu, New pressure-swing distillation for separating pressure-insensitive maximum boiling azeotrope via introducing a heavy entrainer: Design and control, Ind. Eng. Chem. Res. 52 (2013) 7836–7853. https://doi.org/10.1021/ie400274d.

    [8] A. Dhima, J. C. de Hemptinne, G. Moracchini, Solubility of light hydrocarbons and their mixtures in pure water under high pressure, Fluid Phase Equilib. 145 (1998) 129–150. https://doi.org/10.1016/S0378-3812(97)00211-2.

    [9] A. de Farias Soares, E. Dellosso Penteado, A. A. Ramalho Diniz, A. Komesu, Influence of operational parameters in sour water stripping process in effluents treatment, J. Water Process Eng. 41 (2021) 102012. https://doi.org/10.1016/j.jwpe.2021.102012.

    [10] A. Palakodeti, S. Azman, B. Rossi, R. Dewil, L. Appels, A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping, Renew. Sustain. Energy Rev. 143 (2021) 110903. https://doi.org/10.1016/j.rser.2021.110903.

    [11] Y. Lim, C. J. Lee, Y. S. Jeong, I. H. Song, C. J. Lee, C. Han, Optimal design and decision for combined steam reforming process with dry methane reforming to reuse CO2 as a raw material, Ind. Eng. Chem. Res. 51 (2012) 4982–4989. https://doi.org/10.1021/ie200870m.

    [12] S. Ziaii, G. T. Rochelle, T. F. Edgar, Optimum design and control of amine scrubbing in response to electricity and CO2 prices, Energy Procedia. 4 (2011) 1683–1690. https://doi.org/10.1016/j.egypro.2011.02.041.

    [13] G. Liu, L. He, Z. Fan, Y. He, Z. Wu, Z. Wang, Investigation of gas solubility and its effects on natural gas reserve and production in tight formations, Fuel. 295 (2021) 120507. https://doi.org/10.1016/j.fuel.2021.120507.

    [14] X. Dong, H. Liu, Z. Chen, K. Wu, N. Lu, Q. Zhang, Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection, Appl. Energy. 239 (2019) 1190–1211. https://doi.org/10.1016/j.apenergy.2019.01.244.

    [15] P. A. Ridgway, K. Butler, Some physical properties of the ternary system benzene-cyclohexane-n-hexane, J. Chem. Eng. Data. 12 (1967) 509–515.

    [16] J. C. J. Mathieson, A. R., Thynne, Thermodynamics of hydrocarbon hixtures. part II. the heats of mixing of the binary mixtures formed by benzene, cyclohexane, n-heptane, toluene, and n-hexane, J. Chem, Soc. (1956) 3708–3713.

    [17] P. J. Leinonen, D. Mackay, The multicomponent solubility of hydrocarbons in water, Can. J. Chem. Eng. 51 (1973) 230–233. https://doi.org/10.1002/cjce.5450510213.

    [18] A. R. Richards, E. Hargreaves, Vapor-liquid equilibria of close-boiling binary hydrocarbon mixtures, Ind. Eng. Chem. 36 (1944) 805–808. https://doi.org/10.1021/ie50417a008.
    [19] R. L.Van Konynenburg, P. H. Scott, Critical lines and phase equilibria in binary van der Waals mixtures, Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci. 298 (1980) 495–540. https://doi.org/10.1098/rsta.1980.0266.

    [20] E. Brunner, Fluid mixtures at high pressures IX. Phase separation and critical phenomena in 23 (n-alkane + water) mixtures, J. Chem. Thermodyn. 22 (1990) 335–353. https://doi.org/10.1016/0021-9614(90)90120-F.

    [21] A. V. Plyasunov, E. L. Shock, Standard state Gibbs energies of hydration of hydrocarbons at elevated temperatures as evaluated from experimental phase equilibria studies, Geochim. Cosmochim. Acta. 64 (2000) 2811–2833. https://doi.org/10.1016/S0016-7037(00)00401-4.

    [22] M. A. Barrufet, K. Liu, S. Rahman, C. Wu, Simultaneous vapor-liquid-liquid equilibria and phase molar densities of a quaternary system of propane + pentane + octane + water, J. Chem. Eng. Data. 41 (1996) 918–922. https://doi.org/10.1021/je9600616.

    [23] J. P. Hayden, J. G. O’Connell, A generalized method for predicting second virial coefficients, Ind. Eng. Chem. Process Des. Dev. 14 (1975) 209–216.

    [24] H. Renon, J. M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J. 14 (1968) 135–144.

    [25] D. S. Abrams, J. M. Prausnitz, Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE J. 21 (1975) 116–128.

    [26] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27 (1972) 1197–1203. https://doi.org/10.1016/0009-2509(72)80096-4.

    [27] D.Y. Peng, D. B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam. 15 (1976) 59–64. https://doi.org/10.1021/i160057a011.

    [28] N. C. Patel, A. S. Teja, A new cubic equation of state for fluids and fluid mixtures, Chem. Eng. Sci. 37 (1982) 463–473.

    [29] R. Dohrn, S. Peper, J. M. S. Fonseca, High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2000-2004), Fluid Phase Equilib. 288 (2010) 1–54. https://doi.org/10.1016/j.fluid.2009.08.008.

    [30] R. Dohrn, G. Brunner, Phase equilibria in ternary and quaternary systems of hydrogen, water and hydrocarbons at elevated temperatures and pressures., Fluid Phase Equilib. 29 (1986) 535–544. https://doi.org/10.1016/0378-3812(86)85052-X.

    [31] D. F. Othmer, “Composition of vapors from boiling soultions,” Anal. Chem., 20 (1948) 763–766.

    [32] J. M. S. Fonseca, R. Dohrn, S. Peper, High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2005-2008), Fluid Phase Equilib. 300 (2011) 1–69. https://doi.org/10.1016/j.fluid.2010.09.017.

    [33] H. Li, M. Han, X. Gao, X. Li, Isobaric vapor-liquid equilibrium for binary system of cinnamaldehyde + benzaldehyde at 10, 20 and 30 kPa, Fluid Phase Equilib. 364 (2014) 62–66. https://doi.org/10.1016/j.fluid.2013.12.002.

    [34] H. M. Lin, M. J. Lee, R. J. Lee, High-temperature phase equilibria for asymmetric mixtures of helium + m-xylene and nitrogen + m-xylene, Ind. Eng. Chem. Res. 34 (1995) 4524–4530. https://doi.org/10.1021/ie00039a046.

    [35] R. J. Lee, K. C. Chao, Extraction of 1-methylnaphthalene and m-cresol with supercritical carbon dioxide and ethane, Fluid Phase Equilib. 43 (1988) 329–340. https://doi.org/10.1016/0378-3812(88)87013-4.

    [36] G. Ferrentino, S. Balzan, S. Spilimbergo, On-line color monitoring of solid foods during supercritical CO2 pasteurization, J. Food Eng. 110 (2012) 80–85. https://doi.org/10.1016/j.jfoodeng.2011.12.006.

    [37] W. Zhang, E. Kiran, (p, V, T) behaviour and miscibility of (polysulfone + THF + carbon dioxide) at high pressures, J. Chem. Thermodyn. 35 (2003) 605–624. https://doi.org/10.1016/S0021-9614(02)00237-9.

    [38] H. S. Byun, J. G. Kim, J. S. Yang, Phase behavior of the poly[hexyl (meth)acrylate]-supercritical solvents-monomer mixtures at high pressures, Ind. Eng. Chem. Res. 43 (2004) 1543–1552. https://doi.org/10.1021/ie030724u.

    [39] H. Y. Chiu, R. F. Jung, M. J. Lee, H. M. Lin, Vapor-liquid phase equilibrium behavior of mixtures containing supercritical carbon dioxide near critical region, J. Supercrit. Fluids 44 (2008) 273–278. https://doi.org/10.1016/j.supflu.2007.09.026.

    [40] J. D. Raal, A. M. Motchelaho, Y. Perumal, X. Courtial, D. Ramjugernath, P-x data for binary systems using a novel static total pressure apparatus, Fluid Phase Equilib. 310 (2011) 156–165. https://doi.org/10.1016/j.fluid.2011.08.009.

    [41] J. Ke, P. J. King, M. W. George, M. Poliakoff, Method for locating the vapor-liquid critical point of multicomponent fluid mixtures using a shear mode piezoelectric sensor, Anal. Chem. 77 (2005) 85–92. https://doi.org/10.1021/ac048970i.

    [42] M. Tang, T. B. Du, Y. P. Chen, Sorption and diffusion of supercritical carbon dioxide in polycarbonate, J. Supercrit. Fluids 28 (2004) 207–218. https://doi.org/10.1016/S0896-8446(03)00045-7.

    [43] N. VonSolms, J. K. Nielsen, O. Hassager, A. Rubin, A. Y. Dandekar, S. I. Andersen, E. H. Stenby, Direct measurement of gas solubilities in polymers with a high-pressure microbalance, J. Appl. Polym. Sci. 91 (2004) 1476–1488. https://doi.org/10.1002/app.13371.

    [44] M. Naito, Y. Sasaki, T. Dewa, Y. Aoyama, Y. Okahata, Effect of solvation on induce-fit molecular recognition in supercritical fluid to organic crystals immobilized on a quartz crystal microbalance, J. Am. Chem. Soc. 123 (2001) 11037–11041. https://doi.org/10.1021/ja0164935.

    [45] S. E. Guigard, G. L. Hayward, R. G. Zytner, W. H. Stiver, Measurement of solubilities in supercritical fluids using a piezoelectric quartz crystal, Fluid Phase Equilib. 187–188 (2001) 233–246. https://doi.org/10.1016/S0378-3812(01)00538-6.

    [46] NIST Chemistry WebBook, NIST Standard Reference Database No. 69-March 2003 Release, National Institute of Standard and Technology, USA, (2003).

    [47] C. Tsonopoulos, G. M. Wilson, High‐temperature mutual solubilities of hydrocarbons and water. Part I: benzene, cyclohexane and n‐hexane, AIChE J. 29 (1983) 990–999. https://doi.org/10.1002/aic.690290618.

    [48] H. Chen, J. Wagner, An apparatus and procedure for measuring mutual solubilities of hydrocarbons + water: benzene + water from 303 to 373 K, 1994. https://pubs.acs.org/sharingguidelines (accessed May 22, 2021).

    [49] B. J. Neely, J. Wagner, R. L. Robinson, K. A. M. Gasem, Mutual solubility measurements of hydrocarbon-water systems containing benzene, toluene, and 3-methylpentane, J. Chem. Eng. Data 53 (2008) 165–174. https://doi.org/10.1021/je700449z.
    [50] F. Y. Jou, A. E. Mather, Liquid-liquid equilibria for binary mixtures of water + benzene, water + toluene, and water + p-xylene from 273 K to 458 K, J. Chem. Eng. Data. 48 (2003) 750–752. https://doi.org/10.1021/je034033g.

    [51] D. Tu, M. Lai, G. Fei, Vapor-liquid phase equilibrium of binary system of benzene - water and m-xylene - water, Huagong Xuebao. 45 (1994) 225–229.

    [52] F. E. Anderson, J. M. Prausnitz, Mutual solubilities and vapor pressures for binary and ternary aqueous systems containing benzene, toluene, m-xylene, thiophene and pyridine in the region 100-200°C, Fluid Phase Equilib. 32 (1986) 63–76. https://doi.org/10.1016/0378-3812(86)87006-6.

    [53] S. Pereda, J. A. Awan, A. H. Mohammadi, A. Valtz, C. Coquelet, E. A. Brignole, D. Richon, Solubility of hydrocarbons in water: Experimental measurements and modeling using a group contribution with association equation of state (GCA-EoS), Fluid Phase Equilib. 275 (2009) 52–59. https://doi.org/10.1016/j.fluid.2008.09.008.

    [54] C. Marche, C. Ferronato, J. Jose, Solubilities of n-alkanes (C6 to C8) in water from 30 °C to 180 °C, in: J. Chem. Eng. Data, American Chemical Society, 2003: pp. 967–971. https://doi.org/10.1021/je025659u.

    [55] M. Günay, H. Erdemi, A. Baykal, H. Sözeri, M. S. Toprak, Triethylene glycol stabilized MnFe2O4 nanoparticle: Synthesis, magnetic and electrical characterization, Mater. Res. Bull. 48 (2013) 1057–1064. https://doi.org/10.1016/j.materresbull.2012.11.097.

    [56] A. Fredenslund, J. Gmehling, P. Rasmussen, Vapor-liquid equilibria using UNIFAC: group-contribution method, Elsevier, Amsterdam, (1977).

    [57] S. Walas, Phase equilibria in chemical engineering, Butterworth, Boston, USA, 1985.

    [58] H. I. Britt, R. H. Luecke, The estimation of parameters in nonlinear, implicit models, Technometrics. 15 (1973) 233–247. https://doi.org/10.1080/00401706.1973.10489037.

    QR CODE