簡易檢索 / 詳目顯示

研究生: 瓦黛妃
Devi - Wahyuningtyas
論文名稱: 生物應用導向的上轉換粒子表面修飾
SURFACE MODIFICATION OF UPCONVERSION NANOPARTICLES FOR BIOLOGICAL USAGE
指導教授: 李賢明
Hsien-Ming Lee
口試委員: 陳良益
Liang-Yih Chen
張家耀
Jia-Yaw Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 61
中文關鍵詞: 二氧化矽化反應配位體置換上轉換
外文關鍵詞: silanization, ligand exchange, Upconversion
相關次數: 點閱:139下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用多種方法進行鑭系元素上轉換奈米粒子之
    表面修飾.首先,在同質溶劑及異質溶劑中以配位體置
    換方式將奈米粒子表面修飾聚乙烯亞胺.聚乙烯亞胺
    (polyethyleneimine, PEI, branched, MW=25,000)修飾之上
    轉換奈米粒子在同質溶劑中具有單分散性及直徑50 奈米
    之粒子,並且能夠溶解在水及生理等張溶液.粒子能保
    持在膠體溶液數日.粒子正價之Zeta 電位和螢光胺分析
    結果顯示粒子的表面具有大量聚乙烯亞胺提供的正電胺
    基.其次,利用二氧化矽化反應包覆粒子表面並以水熱
    反應(hydrothermal reaction) 修飾上聚乙二醇- 甲矽烷
    (PEG500-silane)及胺基.在本研究使用了固態二氧化矽
    (solid-silica)及微孔二氧化矽(mesoporous silica)兩種表
    面二氧化矽高分子成膜化方法,以逆微泡及Stober 法可
    成功制備表面二氧化矽包覆之奈米粒子.以此方法置備
    的上轉換奈米粒子可溶解於水中,但在生物等張 (離子強
    度約 300 mM) 緩衝溶液會發生沉澱.我們也發現水熱反
    應後能增加固定上轉換奈米粒子表面的氨丙基三乙氧基
    矽烷(APTES)成鍵反映,但同時卻因晶格損壞, 晶體結構
    改變或形成氧化物造成上轉換螢光訊號降低.在本研究
    中,上轉換奈米粒子的聚乙二醇-甲矽烷及氨丙基三乙氧
    基矽烷修飾量依舊不足以提供粒子的膠體穩定性, 僅PEI
    方式可以繼續發展產生完全生物相容粒子包覆的可能.


    In this study, we have tried several approaches to modify the surface of
    lanthanide-doped upconversion nanoparticles (UCNPs). First, coating the surface
    with PEI through ligand exchange in homogeneous and heterogeneous solvent.
    PEI-coated UCNPs in homogeneous solvent generates monodisperse, small (50
    nm), water and physiological buffer well-dispersed particle. The colloidal stability
    can last for several days. Amines, an abundant functional group on PEI, is
    naturally presented on the particle surface as confirmed by the positive value of
    zeta potential and fluorescamine assay. Second, coating the surface with silica and
    using silanization reaction to functionalize the surface with PEG-silane and
    amines followed by hydrothermal reaction. There are two kind of silica-coating
    tried in this study, solid-silica and mesoporous silica. The coating of silica layer is
    successfully synthesized through reverse micelles followed by Stober process.
    The coated-UCNP synthesized through this method was water dispersible but not
    in physiological. We also noticed that the hydrothermal treatment, although can
    increase the immobilization of APTES on the surface of UCNPs, it lower the
    upconversion luminescence intensity possibly due to lattice damage or phase
    change. It is noticed that with the amount of PEG-silane and APTES we
    immobilized on particle surface still not enough to generate colloidally stable
    UCNPs.

    TABLE OF CONTENTS ABSTRACT ............................................................................................................ ii 中文摘要 ................................................................................................................ iii ACKNOWLEDGEMENT ..................................................................................... iv TABLE OF CONTENTS ........................................................................................ v LIST OF FIGURES ............................................................................................. viii CHAPTER 1 INTRODUCTION ............................................................................ 1 1.1 Background ................................................................................................... 1 1.2 Research objectives ....................................................................................... 2 CHAPTER 2 LITERATURE REVIEW ................................................................. 3 2.1 Principle and types of upconversion process ................................................ 3 2.1.1 Some commonly seen upconversion process.......................................... 3 2.1.2 Lanthanide-doped particle and its upconversion process ....................... 6 2.2 Synthesis of lanthanide-doped upconversion nanoparticles. ......................... 8 2.2.1 Co-precipitation method ......................................................................... 8 2.2.2 Thermal decomposition method ............................................................. 9 2.2.3 Hydro(solvo)thermal method ................................................................ 10 2.3 Surface modification of lanthanide-doped upconversion nanoparticle ....... 11 2.3.1 Ligand exchange ................................................................................... 11 2.3.2 Silica coating......................................................................................... 13 2.3.3 Silanization on silica-coated shell......................................................... 15 CHAPTER 3 EXPERIMENTAL SECTION ........................................................ 17 3.1 Materials and instrumentation ..................................................................... 17 3.2 Method ......................................................................................................... 18 3.2.1 Surface functionalization via ligand exchange with PEI ...................... 18 3.2.2 PEG and amines functionalization on SiO2-coated UCNPs in 2 steps silanization followed by hydrothermal treatment. ......................................... 20 3.2.3 PEG and amine functionalization on SiO2-coated UCNPs in one pot reaction without hydrothermal treatment ....................................................... 21 3.2.4 PEG and amines functionalization on mesoporous silica-coated UCNPs followed by hydrothermal treatment .............................................................. 22 3.2.5 Quantification of amines substitution level .......................................... 23 3.2.6 Surface functionalization stability assay using fluorescamine method 24 3.2.7 Characterization using TEM ................................................................. 25 3.2.8 Characterization using dynamic light scattering (DLS) ....................... 25 CHAPTER 4 RESULT AND DISCUSSION ....................................................... 27 4.1 PEI-ligand exchanged UCNP ...................................................................... 27 4.1.1 Homogeneous solvent ........................................................................... 27 4.1.2 Heterogeneous solvent .......................................................................... 35 4.2 Silica coating and surface modification on SiO2-coated UCNPs in 2 steps 36 4.2.1 UCNP Silica-coating............................................................................. 36 4.2.2 PEG and amine functionalization on SiO2-coated UCNPs followed by hydrothermal treatment .................................................................................. 40 4.3 PEG and amine functionalization on SiO2-coated UCNPs via one pot reaction without hydrothermal treatment .......................................................... 48 4.4 PEG and amines functionalization on mesoporous silica-coated UCNPs in one pot reaction followed by hydrothermal treatment. ..................................... 51 CHAPTER 5 CONCLUSION ............................................................................... 56 REFERENCE ........................................................................................................ 58

    REFERENCE
    1. R. R. Shuang Fang Lim, William S. Ryu, Nora Khanarian, Chih-kuan
    Tung, David Tank, and Robert H. Austin, Nano Letters, 2006, 6, 169-174.
    2. L. Pan, M. He, J. Ma, W. Tang, G. Gao, R. He, H. Su and D. Cui,
    Theranostics, 2013, 3, 210-222.
    3. Y.-L. C. Yi-Hsin Chien, Shu-WenWang, Shu-Ting Hung, Min-Chiau
    Liau, Yu-Jo Chao, Chia-Hao Su, and Chen-Sheng Yeh, ACS Nano, 2013,
    7, 8516-8528.
    4. Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li and F. Li, Journal of the
    American Chemical Society, 2011, 133, 17122-17125.
    5. A. Hischemoller, C. Walter, V. Weiler, H. Hummel, T. Thepen, M. Huhn,
    S. Barth, W. Hoheisel, K. Kohler, D. Dimova-Landen, C. Bremer, M.
    Haase and J. Waldeck, Int. J. Mol. Sci., 2012, 13, 4153-4167.
    6. X. Wang, K. Liu, G. Yang, L. Cheng, L. He, Y. Liu, Y. Li, L. Guo and Z.
    Liu, Nanoscale, 2014, 6, 9198-9205.
    7. M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M.
    Huang and X. Chen, Nanoscale, 2014, 6, 8274.
    8. A. Zhou, Y. Wei, B. Wu, Q. Chen and D. Xing, Molecular Pharmaceutics,
    2012, 9, 1580-1589.
    9. N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran
    and Y. Zhang, Nature Medicine, 2012, 18, 1580-1585.
    10. F. o. Auzel, Chem. Rev., 2004, 104, 139-173.
    11. H. L. Guangshun Yi, Shuying Zhao, Yue Ge, Wenjun Yang, Depu Chen,
    and Liang-Hong Guo, Nano Letters, 2004, 4, 2191-2196.
    12. Z. Li and Y. Zhang, Nanotechnology, 2008, 19, 345606.
    13. F. V. John-Christopher Boyer, Louis A. Cuccia, and John A. Capobianco,
    J. Am. Chem. Soc., 2006, 128, 7444-7445.
    14. F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan and M. Wang,
    Nanotechnology, 2006, 17, 5786-5791.
    15. X. F. Feng Wang, Minquan Wang and Yong Zhang, Nanotechnology,
    2007, 18, 025701-025705.
    16. F. W. a. X. Liu, Journal of the American Chemical Society, 2008, 130,
    5642–5643.
    17. J. Jin, Z. Xu, Y. Zhang, Y. J. Gu, M. H. Lam and W. T. Wong, Advanced
    Healthcare Materials, 2013, 2, 1501-1512.
    18. M. Wang, G. Abbineni, A. Clevenger, C. Mao and S. Xu, Nanomedicine :
    Nanotechnology, Biology, and Medicine, 2011, 7, 710-729.
    19. A. Sedlmeier and H. H. Gorris, Chem. Soc. Rev., 2015, 44, 1526-1560.
    20. M. Haase and H. Schafer, Angewandte Chemie, 2011, 50, 5808-5829.
    21. P.-D. Nguyen, S. J. Son and J. Min, Journal of Nanoscience and
    Nanotechnology, 2014, 14, 157-174.
    22. F. Wang and X. Liu, Chem. Soc. Rev., 2009, 38, 976-989.
    23. D. B. Karl W. Krämer, Gabriela Frei, Hans U. Güdel, Markus P. Hehlen,
    and Stefan R. Lüthi, Chem. Mater., 2004, 16, 1244-1251.
    24. G. S. Yi and G. M. Chow, Advanced Functional Materials, 2006, 16,
    2324-2329.
    25. S. Sivakumar, P. R. Diamente and F. C. van Veggel, Chem. Eur. J., 2006,
    12, 5878-5884.
    26. Z. Gu, L. Yan, G. Tian, S. Li, Z. Chai and Y. Zhao, Adv Mater, 2013, 25,
    3758-3779.
    27. H. Hu, L. Xiong, J. Zhou, F. Li, T. Cao and C. Huang, Chem. Eur. J.,
    2009, 15, 3577-3584.
    28. H. S. Mader, P. Kele, S. M. Saleh and O. S. Wolfbeis, Curr Opin Chem
    Biol, 2010, 14, 582-596.
    29. L. Wang, W. Zhao and W. Tan, Nano Res., 2008, 1, 99-115.
    30. V. Muhr, S. Wilhelm, T. Hirsch and O. S. Wolfbeis, Acc Chem Res, 2014,
    47, 3481-3493.
    31. Y. Ai, D. Tu, W. Zheng, Y. Liu, J. Kong, P. Hu, Z. Chen, M. Huang and
    X. Chen, Nanoscale, 2013, 5, 6430-6438.
    32. N. Bogdan, F. Vetrone, R. Roy and J. A. Capobianco, Journal of Materials
    Chemistry, 2010, 20, 7543.
    33. J. V. Garcia, J. Yang, D. Shen, C. Yao, X. Li, R. Wang, G. D. Stucky, D.
    Zhao, P. C. Ford and F. Zhang, Small, 2012, 8, 3800-3805.
    34. Y. Y. Chen, P. A. Ma, D. M. Yang, Y. Wu, Y. L. Dai, C. X. Li and J. Lin,
    Chem. Asian J., 2014, 9, 506-513.
    35. R. Abdul Jalil and Y. Zhang, Biomaterials, 2008, 29, 4122-4128.
    36. H. S. Mader, M. Link, D. E. Achatz, K. Uhlmann, X. Li and O. S.
    Wolfbeis, Chem. Eur. J, 2010, 16, 5416-5424.
    37. K. R. Hurley, Y. S. Lin, J. Zhang, S. M. Egger and C. L. Haynes, Chem.
    Mater., 2013, 25, 1968-1978.
    38. N. J. Johnson, N. M. Sangeetha, J. C. Boyer and F. C. van Veggel,
    Nanoscale, 2010, 2, 771-777.
    39. A. Xia, Y. Deng, H. Shi, J. Hu, J. Zhang, S. Wu, Q. Chen, X. Huang and J.
    Shen, ACS Appl Mater Interfaces, 2014, 6, 18329-18336.
    40. C. Li, Z. Hou, Y. Dai, D. Yang, Z. Cheng, P. a. Ma and J. Lin, Biomater.
    Sci., 2013, 1, 213-223.
    41. Y.-S. Lin, K. R. Hurley and C. L. Haynes, J. Phys. Chem. Lett., 2012, 3,
    364-374.
    42. Y.-S. Lin and C. L. Haynes, Chem. Mater., 2009, 21, 3979-3986.

    QR CODE