簡易檢索 / 詳目顯示

研究生: 謝瑋庭
Wei-Ting Hsieh
論文名稱: 剪切增稠高分子混合物抗衝擊與能量耗散性質之研究
Studies on impact resistance and energy dissipation properties of shear thickening polymer mixtures
指導教授: 洪伯達
Po-da Hong
口試委員: 葉樹開
Shu-kai Yeh
郭致賢
Chih-sien Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 56
中文關鍵詞: 剪切增稠聚乙二醇二氧化矽能量耗散
外文關鍵詞: shear thickening, PEG, silica, energy dissipation
相關次數: 點閱:345下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究中以聚乙二醇(PEG200)與二氧化矽製備出剪切增稠複合流體,並利用流變儀來量測其剪切增稠的特性,我們嘗試找出具有最佳剪切增稠效果的條件,並希望可以進一步應用於防護器材上。

首先,我們發現隨著二氧化矽的體積分率增加,剪切增稠現象會從連續性剪切增稠(CST)漸變為不連續性剪切增稠(DST),而不連續剪切增稠(DST)的黏度曲線斜率在接近臨界體積分率處呈現發散,顯示系統接近堵塞(Jammed)狀態,此不連續性剪切增稠現象的急遽黏度變化較適合應用於防護方面。此外,我們也發現在剪切增稠的過程伴隨著法向應力差的產生,歸因於具各向異性的hydrocluster所導致。

接著我們改變外在環境溫度,觀察到溫度的上升使剪切增稠現象減弱,因此需要較大的臨界剪切速率才能誘發剪切增稠現象;但臨界剪切應力卻不隨溫度而改變,最後經連續相黏度規格化後得知剪切增稠效果的減弱大部分來自於連續相受溫度的影響。

為了更進一步了解剪切增稠現象,我們利用大震幅震盪剪切(LAOS)探討剪切增稠過程的非線性黏彈行為。我們得知不連續性剪切增稠現象中的非線性彈性部分是由應變速率主導的strain-stiffening現象;非線性黏性部分由應變速率主導的shear-thickening現象,但隨著角頻率的增加非線性黏性會轉變為應變所主導。

最後經由積分Lissajous-Bowditch curve中的應力-應變曲線面積可以得到剪切增稠時所耗散的能量,確認剪切增稠行為的發生伴隨著能量耗散增加,且DST的能量耗散效率比CST佳,並隨著角頻率增加能量耗散的效果更為顯著。此結果顯示我們所配製的剪切增稠複合流體在剪切增稠現象發生時具有黏度(硬度)上升與能量耗散的效果,為同時兼顧剛性與阻尼性的複合材料。


The main aim of this present dissertation is to prepare effective condition and formulation of the shear thickening fluid of the SiO2 blended with polyethylene glycol (200) was performed through the rheometer by measured shear thickening phenomenon with various concentrations. The shear thickening effect was optimized to find out the best conditions for usage as the protective equipment.

Upon increase the volume fraction of SiO2, the viscosity was increased continuously (CST) to discontinuously (DST). The slope of viscosity curve in shear thickening part was found as increased with increased volume fraction (Φ) and diverged at critical volume fraction(Φ_c). Such a diverging viscosity is mainly related to jamming phenomenon. Also, we have found the normal force emerges while rheological measurement, which is attributed to the formation of particle’s anisotropic microstructure (hydrocluster).

In addition, influence of external temperature was studied to understand shear thickening behaviors upon the increase the temperature. The reduction of the shear thickening effect was observed while increased temperature of SiO2 blend. Thus, we have used the viscosity of PEG200 to normalize the temperature effect, and found that the main reason for shear thickening effect reduction due to the continuous phase of PEG200, which was influenced by temperature.

In order to understand further shear thickening phenomenon, we have used large amplitude oscillatory shear (LAOS) to investigate the nonlinear viscoelastic behavior of shear thickening phenomenon. The obtained results indicated the elastic nonlinearity and viscous nonlinearity were donated by strain-rate. However while increased the angular frequency, viscous nonlinearity have been converted to strain dominated. Finally, we have obtained the dissipated energy by integrating the area of Lissajous-Bowditch curve, which shows an obvious increase in energy dissipation in the shear thickening region. The dissipated energy of DST is more efficient than dissipated energy of CST, and an increase of angular frequency tends to enhance the dissipated energy. These results imply that obtained shear thickening fluid composite can raise viscosity (hardness) and energy dissipation as shear thickening occurs.

The above comparison results revealed that presented optimized condition may possible to produce fluid analogue to usage as the protective equipment.

目錄 論文提要內容 Abstract 目錄 圖表目錄 論文符號表 第一章 前言 1.1剪切增稠流體介紹 1.2剪切增稠特性與應用 1.3研究動機與目的 第二章 理論背景 2.1剪切增稠現象之機制 2.1.1 Order-Disorder Theory 2.1.2 Hydrocluster Theory 2.2剪切增稠現象之理論發展 2.3流變學 2.3.1牛頓流體(Newtonian fluid) 2.3.2非牛頓流體(Non-Newtonian fluid) 2.3.3穩態流變(Rotation shear) 2.3.4動態流變(Oscillation shear) 2.3.4.1小振幅振盪剪切(SAOS) 2.3.4.2大振幅振盪剪切(LAOS) 第三章 實驗部分 3.1 實驗材料 3.2 樣品製備 3.3 實驗儀器 3.4 實驗方法 3.4.1流變儀(Rheometer) 3.4.2熱重分析儀(TGA) 第四章 結果與討論 4.1穩態流變-剪切增稠現象 4.2分散相體積分率效應 4.2.1分散相體積分率導致的臨界相變 4.2.2剪切增稠現象導致之法向應力差 4.3溫度效應 4.3.1 溫度對於剪切增稠效果的影響 4.3.2 連續相黏度對於剪切增稠現象的影響 4.4動態流變-非線性黏彈行為 4.4.1 應變掃描-大振幅振盪剪切 4.4.2 剪切增稠流體於大振幅振盪剪切中的非線性黏彈性質 4.4.3 不同角頻率對於非線性黏彈性質的影響 4.4.4 剪切增稠流體之能量耗散現象 第五章 結論 參考文獻

參考文獻

1. Barnes, H. A., “Shear-Thickening (Dilatancy) in suspension of nonaggregating solid particles dispersed in newtonian liquids,” J. Rheol. 1989, 33, 329–366.
2. Laun, H. M.; Bung, R.; Schmidt, F., “Rheology of extremely shear thickening polymer dispersions (passively viscosity switching fluids),” J. Rheol. 1991, 35, 999–1034.
3. Bossis, G.; Brady, J. F., “The rheology of Brownian suspensions,” J. Chem. Phys. 1989, 91, 1866.
4. Bender, J. W.; Wagner, N. J., “Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions,” J. Colloid Interface Sci. 1995, 172, 171–184.
5. D'Haene, P.; Mewis, J.; Fuller, G. G., “Scattering Dichroism Measurements of Flow–Induced Structure of a Shear Thickening Suspension,” J. Colloid Interface Sci. 1993, 156, 350–358.
6. Bender, J. W.; Wagner, N. J., “Reversible shear thickening in monodisperse and bidisperse colloidal dispersions,” J. Rheol. 1996, 40, 899–916.
7. Alince, B.; Lepoutre, P., “Flow behavior of pigment blends,” TAPPI J. 1983, 06, 57.
8. Choi, S. D., thesis, Ann Arbor, MI, 1983.
9. Raghavan, S. R.; Khan, S. A., “Shear-thickening response of fumed silica suspensions under steady and oscillatory shear,” J. Colloid Interface Sci. 1997, 185, 57.
10. Lee, Y. S.; Wetzel E. D.; Wagner, N. J., “The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid,” J. Mater. Sci. 2003, 38, 2825–2833.
11. Raghavan, S. R.; Walls, H. J.; Khan, S. A., “Rheology of silica dispersions in organic liquids: New evidence for solvation forces dictated by hydrogen bonding,” Langmuir 2000, 16, 7920–7930.
12. Warren, J.; Offenberger, S.; Toghiani, H.; Pittman Jr, C. U.; Lacy, T. E.; Kundu, S., “Effect of Temperature on the Shear-Thickening Behavior of Fumed Silica Suspensions,” ACS Appl. Mater. Interfaces 2015, 7, 18650–18661.
13. Lee, Y. S.; Wagner, N. J., “Dynamic properties of shear thickening colloidal suspensions,” Rheol. Acta 2003, 42, 199–208.
14. Soutrenon, M.; Michaud, V., “Energy dissipation in concentrated monodisperse colloidal suspensions of silica particles in polyethylene glycol,” Colloid Polym. Sci. 2014, 292, 3291–3299.
15. Soutrenon, M.; Michaud, V., “Impact properties of shear thickening fluid impregnated foams,” Smart Mater. Struct. 2014, 23, 035022.
16. Decker, M. J.; Halbach, C. J.; Nam, C. H.; Wagner, N. J.; Wetzel, E. D., “Stab resistance of shear thickening fluid (STF)-treated fabrics,” Compos Sci Technol 2007, 67, 565–578.
17. Hoffman, R. L., “Discontinuous and dilatant viscosity behavior in concentrated suspensions I. Observation of a flow instability,” J. Colloid Interface Sci. 1972, 16, 155–173.
18. Hoffman, R. L., “Discontinuous and dilatant viscosity behavior in concentrated suspensions II. Theory and experimental tests,” J. Colloid Interface Sci. 1974, 46, 491.
19. Hoffman, R. L., “Discontinuous and dilatant viscosity behavior in concentrated suspensions III: Necessary conditions for their occurrence in viscometric flows,” Adv. Colloid Interface Sci. 1982, 17, 161.
20. Chow, M. K.; Zukoski, C. F., “Nonequilibrium behavior of dense suspensions of uniform particles: volume fraction and size dependence of rheology and microstructure,” J. Rheol. 1995, 39, 33–59.
21. Brady, J. F.; Bossis, G., “The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation,” J. Fluid Mech. 1985, 155, 105–129.
22. Brady, J. F.; Bossis, G., “Stokesian dynamics,” Annu. Rev. Fluid Mech. 1988, 20, 111–57.
23. Wagner, N. J.; Brady, J. F., “Shear thickening in colloidal dispersions,” Phys. Today 2009, 62, 27–32.
24. Batchelor, G. K., “Brownian diffusion of particles with hydrodynamic interaction,” J. Fluid Mech. 1976, 74, 1–29.
25. D’Haene, P.; Mewis, J., “Rheological characterization of bimodal colloidal dispersions,” Rheol. Acta 1994, 33, 165–174.
26. Maranzano, B. J.; Wagner, N. J., “The effects of particle size on reversible shear thickening of concentrated colloidal dispersions,” J. Chem. Phys. 2001, 114, 10514–10527.
27. Thomas, G. Mezger, The rheology handbook 3rd revised edition, 2011.
28. Hyun, K.; Wilhelm, M.; Klein, C. O.; Cho, K. S.; Nam, J. G.; Ahn, K. H.; Lee, S. J.; Ewoldt, R. H.; McKinley, G. H., “A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS),” Prog. Polym. Sci. 2011, 36, 1697–1753.
29. Wilhelm, M.; Marin, D.; Spiess, H. W., “Fourier-transform rheology,” Rheol. Acta 1998, 37, 399–405.
30. Wilhelm, M.; Reinheimer, P.; Ortseifer, M., “High sensitivity fourier transform rheology,” Rheol. Acta 1999, 38, 349–356.
31. Ewoldt, R. H.; Hosoi, A. E.; McKinley, G. H., “New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear,” J. Rheol. 2008, 52, 1427–58.
32. Raghavan, S. R.; Hou, J.; Baker, G. L.; Khan, S. A., “Colloidal interactions between particles with tethered nonpolar chains dispersed in polar media direct correlation between dynamic rheology and interaction parameters,” Langmuir 2000, 16, 1066–1077.
33. Lee, Y. S.; Wagner, N. J., “Rheological properties and small-angle neutron scatting of a shear thickening, nanoparticle dispersion at high shear rates,” Ind. Eng. Chem. Res. 2006, 45, 7015.
34. Brown, E.; Jaeger, H. M., “Dynamic jamming point for shear thickening suspensions,” Phys. Rev. Lett. 2009, 103, 086001.
35. 于淥; 郝柏林, 相變和臨界現象, 科學出版社 1992.
36. Brown, E.; Jaeger, H. M., “Shear thickening and jamming in densely packed suspensions of different particle shapes,” Phys. Rev. Lett. 2011, 84, 031408.
37. Brown, E.; Jaeger, H. M., “The role of dilation and confining stress in shear thickening of dense suspensions,” J. Rheol. 2012, 56, 875–923.
38. Lootens, D.; van Damme, H., “Dilatant flow of concentrated suspensions of rough particles,” Phys. Rev. Lett. 2005, 95, 268302.
39. Fall, A.; Huang, N.; Bertrand, F.; Ovarlez, G.; Bonn, D., “Shear Thickening of Cornstarch Suspensions as a Reentrant Jamming Transition,” Phys. Rev. Lett. 2008, 100, 018301.
40. Shenoy, S. S.; Wagner, N. J., “Influence of medium viscosity and adsorbed polymer on the reversible shear thickening transition in concentrated colloidal dispersions,” Rheol. Acta 2005, 44, 360–371.
41. Khandavalli, S.; Rothstein, J. P., “Large Amplitude Oscillatory Shear Rheology of Three Different Shear-Thickening Particle Dispersions,” Rheol. Acta 2015, 54, 601−618.
42. Citerne, G. P.; Carreau, P. J.; Moan, M., “Rheological properties of peanut butter,” Rheol. Acta 2001, 40, 86–96.
43. Yziquel, F., Carreau, P. J., Tanguy, P. A., “Non-linear viscoelastic behavior of fumed silica suspensions,” Rheol. Acta 1999, 38, 14–25.

QR CODE