簡易檢索 / 詳目顯示

研究生: 余芮萍
Jui-Ping Yu
論文名稱: 研究複合水凝膠在細胞生物上的應用
The design of composite hydrogels for cell biology applications
指導教授: 黃人則
Jen-Tse Huang
何明樺
Ming-Hua Ho
口試委員: 黃人則
Jen-Tse Huang
何明樺
Ming-Hua Ho
游佳欣
Jiashing Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 67
中文關鍵詞: 生物蛋白胜肽自組裝分子水凝膠細胞支架
外文關鍵詞: organism proteins, peptides, self-assembly, hydrogels, cell scaffolds
相關次數: 點閱:210下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 i ABSTRACT ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 viii 附圖目錄 ix 第ㄧ章 緒論 1 1.1 貽貝中的自組裝蛋白 1 1.2 自組裝分子的性質與應用 3 1.2.1 自組裝分子間之相互作用力及調控 3 1.2.2 自組裝分子之結構 3 1.3 胜肽水凝膠的應用 4 1.3.1 胜肽水凝膠之可注射性質 4 1.4 三維細胞支架 5 1.5 研究目的 7 第2章 實驗儀器與材料 8 2.1 實驗儀器列表 8 2.2 實驗材料 10 2.2.1 胜肽合成與純化試劑配置 10 2.2.2 電子顯微鏡樣品製備材料 10 2.2.3 細胞材料 11 2.2.2 藥品表 11 第3章 實驗方法與使用儀器介紹 13 3.1 胜肽樣品製備 (合成、純化與鑑定) 13 3.1.1 固相胜肽合成法 (Solid-Phase Peptide Synthesis, SPPS) 13 3.1.2 高效液相層析 (High-Performance Liquid Chromatography, HPLC) 14 3.1.3 基質補助雷射脫附游離質譜法 (MALDI Mass Spectrometry) 15 3.2 聚多巴胺樣品製備 15 3.2.1 多巴胺的聚合 15 3.2.2 螢光光譜法之鑑定 (Fluorescence Spectrometry) 16 3.3水凝膠材料性質分析 17 3.3.1 流變儀 (Rheometer) 17 3.3.2 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 18 3.3.2.1 胜肽纖維負染步驟 18 3.3.3 掃描電子顯微鏡 (Scanning Electron Microscope, SEM) 19 3.3.3.1 水凝膠樣品鍍膜步驟 19 3.3.4 水凝膠之自我修復能力 (Self-healing) 19 3.4 三維細胞支架 (Three-dimensional scaffold) 之分析 20 3.4.1 三維細胞支架 (Scaffold) 的製備 20 3.4.2 細胞培養和繼代 20 3.4.3 螢光染色 (Fluorescence staining) 21 3.4.4 共軛焦顯微鏡 (Confocal Microscope) 22 第4章 實驗結果與討論 23 4.1胜肽自組裝水凝膠材料的設計 23 4.1.1 貽貝蛋白之序列挑選 23 4.1.2 置換不同胺基酸組成的胜肽 24 4.2 胜肽材料的合成 24 4.2.1胜肽之性質純化和鑑定 25 4.3 水凝膠的製備 25 4.3.1 水凝膠在不同pH值下的差異 26 4.3.2 鹽離子有助於形成水凝膠 28 4.3.3 胜肽序列之等電點 29 4.3.4 以流變儀鑑定材料的流動性質 30 4.3.4.1 不同濃度下的測量 30 4.3.4.2 不同 pH 下的測量 31 4.3.4.3 不同胜肽序列下的測量 32 4.3.4.4 水凝膠材料自修復性質 33 4.4 以電子顯微鏡觀察水凝膠 34 4.4.1 穿透式電子顯微鏡下之水凝膠 34 4.4.2 掃描式電子顯微鏡下之水凝膠 35 4.5 混合聚多巴胺以增強水凝膠性質 36 4.5.1多巴胺的聚合 36 4.5.1.1 聚多巴胺的合成 36 4.5.1.2 聚多巴胺之螢光光譜 37 4.5.2 胜肽水凝膠混合不同濃度的聚多巴胺 37 4.5.3 水凝膠材料可注射性質 38 4.6 水凝膠的膨潤比 39 4.7 測試纖維母細胞在水凝膠上的生長 39 4.7.1不同成膠條件下對培養基pH的影響 39 4.7.2 纖維母細胞在胜肽水凝膠上之貼附 40 4.7.2.1 以正立式顯微鏡觀察水凝膠表面 40 4.7.2.2 水凝膠作為三維細胞支架 (Scaffold) 之研究 41 4.7.2.3 水凝膠的孔洞率對細胞貼附之影響 42 4.7.3 降低聚多巴胺濃度對水凝膠之影響 44 4.7.3.1 不同聚多巴胺濃度下之流變性質 44 4.7.3.2 不同聚多巴胺濃度下之水凝膠孔洞率 45 4.7.3.3 細胞在水凝膠孔洞上的分佈 45 第5章 總結 47 附圖 48 參考資料 54

    (1) Nicklisch, S. C.; Waite, J. H. Mini-review: the role of redox in Dopa-mediated marine adhesion. Biofouling 2012, 28 (8), 865-877. DOI: 10.1080/08927014.2012.719023 From NLM Medline.
    (2) Waite, J. H.; Andersen, N. H.; Jewhurst, S.; Sun, C. J. Mussel adhesion: Finding the tricks worth mimicking. Journal of Adhesion 2005, 81 (3-4), 297-317. DOI: 10.1080/00218460590944602.
    (3) Balkenende, D. W. R.; Winkler, S. M.; Messersmith, P. B. Marine-Inspired Polymers in Medical Adhesion. Eur Polym J 2019, 116, 134-143. DOI: 10.1016/j.eurpolymj.2019.03.059 From NLM PubMed-not-MEDLINE.
    (4) Lee, B. P.; Messersmith, P. B.; Israelachvili, J. N.; Waite, J. H. Mussel-Inspired Adhesives and Coatings. Annu Rev Mater Res 2011, 41, 99-132. DOI: 10.1146/annurev-matsci-062910-100429 From NLM PubMed-not-MEDLINE.
    (5) Gebbie, M. A.; Wei, W.; Schrader, A. M.; Cristiani, T. R.; Dobbs, H. A.; Idso, M.; Chmelka, B. F.; Waite, J. H.; Israelachvili, J. N. Tuning underwater adhesion with cation-pi interactions. Nat Chem 2017, 9 (5), 473-479. DOI: 10.1038/nchem.2720 From NLM Medline.
    (6) Li, L.; Smitthipong, W.; Zeng, H. B. Mussel-inspired hydrogels for biomedical and environmental applications. Polymer Chemistry 2015, 6 (3), 353-358. DOI: 10.1039/c4py01415d.
    (7) Danner, E. W.; Kan, Y. J.; Hammer, M. U.; Israelachvili, J. N.; Waite, J. H. Adhesion of Mussel Foot Protein Mefp-5 to Mica: An Underwater Superglue. Biochemistry 2012, 51 (33), 6511-6518. DOI: 10.1021/bi3002538.
    (8) Yu, J.; Kan, Y.; Rapp, M.; Danner, E.; Wei, W.; Das, S.; Miller, D. R.; Chen, Y.; Waite, J. H.; Israelachvili, J. N. Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films. Proc Natl Acad Sci U S A 2013, 110 (39), 15680-15685. DOI: 10.1073/pnas.1315015110 From NLM Medline.
    (9) Kaushik, N. K.; Kaushik, N.; Pardeshi, S.; Sharma, J. G.; Lee, S. H.; Choi, E. H. Biomedical and Clinical Importance of Mussel-Inspired Polymers and Materials. Marine Drugs 2015, 13 (11), 6792-6817. DOI: 10.3390/md13116792.
    (10) Israelachvili, J. N. Intermolecular and surface forces; Academic Press, 2011.
    (11) Jones, M. R.; Seeman, N. C.; Mirkin, C. A. Nanomaterials. Programmable materials and the nature of the DNA bond. Science 2015, 347 (6224), 1260901. DOI: 10.1126/science.1260901 From NLM Medline.
    (12) Hosein, I. D.; Liddell, C. M. Convectively assembled nonspherical mushroom cap-based colloidal crystals. Langmuir 2007, 23 (17), 8810-8814. DOI: 10.1021/la700865t.
    (13) Hosein, I. D.; Liddell, C. M. Convectively assembled asymmetric dimer-based colloidal crystals. Langmuir 2007, 23 (21), 10479-10485. DOI: 10.1021/la7007254.
    (14) Geng, Y.; van Anders, G.; Dodd, P. M.; Dshemuchadse, J.; Glotzer, S. C. Engineering entropy for the inverse design of colloidal crystals from hard shapes. Sci Adv 2019, 5 (7), eaaw0514. DOI: 10.1126/sciadv.aaw0514 From NLM PubMed-not-MEDLINE.
    (15) Li, J.; Xing, R.; Bai, S.; Yan, X. Recent advances of self-assembling peptide-based hydrogels for biomedical applications. Soft Matter 2019, 15 (8), 1704-1715. DOI: 10.1039/c8sm02573h From NLM Medline.
    (16) Jayawarna, V.; Ali, M.; Jowitt, T. A.; Miller, A. E.; Saiani, A.; Gough, J. E.; Ulijn, R. V. Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides. Advanced Materials 2006, 18 (5), 611-+. DOI: 10.1002/adma.200501522.
    (17) Cai, L. L.; Liu, S.; Guo, J. W.; Jia, Y. G. Polypeptide-based self-healing hydrogels: Design and biomedical applications. Acta Biomaterialia 2020, 113, 84-100. DOI: 10.1016/j.actbio.2020.07.001.
    (18) Raeburn, J.; Zamith Cardoso, A.; Adams, D. J. The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem Soc Rev 2013, 42 (12), 5143-5156. DOI: 10.1039/c3cs60030k From NLM Medline.
    (19) Tseng, T. C.; Tao, L.; Hsieh, F. Y.; Wei, Y.; Chiu, I. M.; Hsu, S. H. An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System. Adv Mater 2015, 27 (23), 3518-3524. DOI: 10.1002/adma.201500762 From NLM Medline.
    (20) Tsanaktsidou, E.; Kammona, O.; Kiparissides, C. Recent Developments in Hyaluronic Acid-Based Hydrogels for Cartilage Tissue Engineering Applications. Polymers-Basel 2022, 14 (4). DOI: ARTN 839
    10.3390/polym14040839.
    (21) Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014, 15 (12), 786-801. DOI: 10.1038/nrm3904 From NLM Medline.
    (22) Li, Y.; Wang, F. H.; Cui, H. G. Peptide-based supramolecular hydrogels for delivery of biologics. Bioengineering & Translational Medicine 2016, 1 (3), 306-322. DOI: 10.1002/btm2.10041.
    (23) Nikolova, M. P.; Chavali, M. S. Recent advances in biomaterials for 3D scaffolds: A review. Bioactive Materials 2019, 4, 271-292. DOI: 10.1016/j.bioactmat.2019.10.005.
    (24) Zhou, M.; Smith, A. M.; Das, A. K.; Hodson, N. W.; Collins, R. F.; Ulijn, R. V.; Gough, J. E. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 2009, 30 (13), 2523-2530. DOI: 10.1016/j.biomaterials.2009.01.010 From NLM Medline.
    (25) Zhou, M.; Smith, A. M.; Das, A. K.; Hodson, N. W.; Collins, R. F.; Ulijn, R. V.; Gough, J. E. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 2009, 30 (13), 2523-2530. DOI: 10.1016/j.biomaterials.2009.01.010.
    (26) Nemir, S.; West, J. L. Synthetic Materials in the Study of Cell Response to Substrate Rigidity. Ann Biomed Eng 2010, 38 (1), 2-20. DOI: 10.1007/s10439-009-9811-1.
    (27) Zhang, C. M.; Qin, S. Y.; Cheng, Y. J.; Zhang, A. Q. Construction of poly(dopamine) doped oligopeptide hydrogel. Rsc Advances 2017, 7 (80), 50425-50429. DOI: 10.1039/c7ra10363h.
    (28) Karas, M.; Kruger, R. Ion formation in MALDI: the cluster ionization mechanism. Chem Rev 2003, 103 (2), 427-440. DOI: 10.1021/cr010376a From NLM PubMed-not-MEDLINE.
    (29) Moncrieff, J. Myth of the chemical cure : a critique of psychiatric drug treatment; Palgrave Macmillan, 2009.
    (30) Liu, M.; Ji, J.; Zhang, X.; Zhang, X.; Yang, B.; Deng, F.; Li, Z.; Wang, K.; Yang, Y.; Wei, Y. Self-polymerization of dopamine and polyethyleneimine: novel fluorescent organic nanoprobes for biological imaging applications. J Mater Chem B 2015, 3 (17), 3476-3482. DOI: 10.1039/c4tb02067g From NLM PubMed-not-MEDLINE.
    (31) Bisaglia, M.; Soriano, M. E.; Arduini, I.; Mammi, S.; Bubacco, L. Molecular characterization of dopamine-derived quinones reactivity toward NADH and glutathione: Implications for mitochondrial dysfunction in Parkinson disease. Biochimica Et Biophysica Acta-Molecular Basis of Disease 2010, 1802 (9), 699-706. DOI: 10.1016/j.bbadis.2010.06.006.
    (32) Macosko, C. W. Rheology : principles, measurements and applications; VCH, 1993.
    (33) Ferry, J. D. Viscoelastic properties of polymers; Wiley, 1980.
    (34) Chadwick, D.; Goode, J. Role of the sarcoplasmic reticulum in smooth muscle; J. Wiley, 2002.
    (35) Goldstein, J.; Newbury, D. E.; Joy, D. C.; Lyman, C. E.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J. R. Scanning Electron Microscopy and X-Ray Microanalysis : Third Edition; Springer US : Imprint: Springer, 2003.
    (36) Pawley, J.; SpringerLink. Handbook of Biological Confocal Microscopy; Springer US : Imprint: Springer, 2006.
    (37) Minsky, M. Memoir on Inventing the Confocal Scanning Microscope. Scanning 1988, 10 (4), 128-138. DOI: DOI 10.1002/sca.4950100403.
    (38) Xu, Z. H.; Li, Z. Q.; Jiang, S.; Bratlie, K. M. Chemically Modified Gellan Gum Hydrogels with Tunable Properties for Use as Tissue Engineering Scaffolds. Acs Omega 2018, 3 (6), 6998-7007. DOI: 10.1021/acsomega.8b00683.

    無法下載圖示 全文公開日期 2032/07/25 (校內網路)
    全文公開日期 2032/07/25 (校外網路)
    全文公開日期 2032/07/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE