簡易檢索 / 詳目顯示

研究生: 法日棋
Fariz Rifqi Zul Fahmi
論文名稱: MoS2超薄膜厚度對CO2光還原之影響研究
Thickness Dependence of MoS2 Ultrathin Film for CO2 Photo-reduction
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 67
中文關鍵詞: 超薄二硫化鉬薄膜厚度依賴性基板效應光催化劑光還原二氧化碳
外文關鍵詞: MoS2 ultrathin film, Thickness dependence, substrate effect, Photo-catalyst, CO2 photo-reduction
相關次數: 點閱:251下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

二維材料為探索基礎物理與化學提供了新的機會。最廣泛研究的過渡金屬二硫族化物中的材料,像是二硫化鉬,它能夠通過調整層數來改變材料的基本性質。例如塊材的二硫化鉬具有間接帶隙的半導體性質,能階的大小能隨著層數減少而增加。然而,單層二硫化鉬中具有直接帶隙的半導體性質。這種能力使二硫化鉬成為以光催化方式來還原二氧化碳的光催化劑材料。光吸收性能是光催化劑的關鍵要素之一,增加厚度顯著增加吸收性能。
本論文研究了超薄二硫化鉬薄膜對光還原二氧化碳的影響。為了實現光還原二氧化碳,需要考慮六個重要因素 : 能隙、電荷分離和運輸、帶位置與氧化還原電位、吸附物質和電荷攜帶之間的反應、光催化劑表面上化學物質的吸附、以及脫附化學產物等。本文的主題是研究薄膜厚度和基板效應,通過後硫化製程來製備了超薄二硫化鉬薄膜。首先,沉積三氧化鉬薄膜在基板上,然後加熱通入氫氣來轉化為二氧化鉬薄膜,最後通入硫化氫氣體,成功的硫化成二硫化鉬薄膜。透過原子力顯微鏡用來確認薄膜的實際厚度,命名為MS3,MS7和MS17,對應於3nm,7nm,17nm和25nm的原始氧化物層。使用測量紫外線可見光光譜儀,量測薄膜的能隙和吸收性能。根據吸光度數據計算的tauc圖,MS3,MS7和MS17薄膜的能隙分別為1.7 eV,1.65 eV和1.58 eV,以及吸收性能分別為10%,12%和30%。使用拉曼光譜確認薄膜的A1g和E2g1特徵峰之間的頻率差異為23.27, 24.76, 25.76和26.24 cm-1,利用氣相層析儀來分析光還原二氧化碳的氣體產率和產物的選擇性。從氣相層析儀測量中,超薄二硫化鉬薄膜樣品獲得三種碳氫化合物的產物,分別是甲烷(0.095 μmole),乙醛(0.12 μmole)和丙酮(0.04 μmole)。本實驗的結果發現,碳氫化合物的產物的生產速率與超薄二硫化鉬薄膜厚度增加成比例增加,但在超過17 nm後產率開始下降。另外,製鍍超薄二硫化鉬薄膜在不同基板,也呈現碳氫化合物的產物選擇性。
我們成功地證實了超薄二硫化鉬薄膜可以用來光還原二氧化碳的應用,超薄二硫化鉬薄膜的厚度與基板等因素,具有氫化合物的產率與選擇性之相關聯性,提供一個用來研究光還原二氧化碳的學理機制的未來可行方向。


Two Dimensional (2D) materials offer a new opportunity to explore fundamental physics and overcome the scaling limit of bulk materials. The most extensively studied materials are 2H phase in group VI TMDCs such as molybdenum disulfide (MoS2). MoS2 is one of TMDs with adjustable optical properties by tuning the layer number. Bulk MoS2 has an indirect bandgap, which increases monotonically as the number of layer decreases. This ability makes MoS2 as a promising material for photocatalytic CO2 reduction. Light absorption performance is one of the keys to determine the performance metric of the photo-catalyst for CO2 photo-reduction.
This thesis studies MoS2 ultrathin film for CO2 photo-reduction. To make CO2 photo-reduction happen, there are 6 important factors to be considered. Bandgap (Absorption), charge separation and transportation, band position vs redox potential, reaction between adsorbed species and charge carries, adsorption of chemical species on the photo-catalyst surface, and desorption of chemical products. This thesis is to investigate the thickness dependence and substrate effect on the CO2 reduction of MoS2. MoS2 ultrathin film was successfully prepared by post sulfurization.
First step was to deposit MoO3 then converted to MoO2 and sulfurized into MoS2. AFM confirm the thickness, were named as MS3, MS7, and MS17 corresponding to the original oxide layer of 3 nm, 7 nm, 17 nm and 25 nm. UV visible measurement was performed to find out the bandgap and absorption property. From tauc plot calculated from absorbance data, the bandgap are 1.7 eV, 1.65 eV and 1.58 eV, and the absorption performance are 10%, 12% and 30% for MS3, MS7 and MS17 respectively. Raman Spectroscopy confirm the frequency differences between A1g and E2g1 with 23.27, 24.76, 25.76 and 26.24 cm-1 are for MS3, MS7, MS17 and bulk respectively. The grain size was ranging from 40 to 235Å.
The gas chromatography has been performed to understand the productivity and selectivity. 2 x 2 sample inserted to the 7 cm3 chamber with nitrogen, CO2 and H2O entered later. From the GC measurement, 3 products obtained from all samples are methane (0.095 µmole), acetaldehyde (0.12 µmole) and acetone (0.04 µmole). From the thickness dependent measurement, the production rate increase proportional to increased thickness but decreases after exceeding 17 nm. The production rate also revealed if the C1 product not sensitive to thickness inversely proportional with C2 and C3 product.
Finally, MoS2 ultrathin film successfully demonstrated for CO2 photo-reduction. Thickness dependent and substrate effect play a role for selectivity and productivity. Detailed mechanism need further investigation.

Abstract i Acknowledgements v Table of Content vi List of Figures viii List of Tables xi Chapter I Introduction 1 1.1 Status of Global Emission 1 1.2 Photocatalytic CO2 Photo-reduction 2 1.3 2D MoS2 Thin Films as a Photo-catalyst for CO2 Reduction Reaction 4 1.3.1 Synthesis MoS2 2D materials 9 1.4 Motivation and Purpose 12 Chapter II Experimental Detail and Characterization Technique 14 2.1 Experimental Design 14 2.2 Preparation of MoO3 Thin Film as Precursor 14 2.3 Sulfurization of MoO3 into MoS2 15 2.4 Sample Characterization and Measurements 17 2.4.1 Optical Microscope 17 2.4.2 Atomic Force Microscopy 18 2.4.3 Raman Spectroscopy 19 2.4.4 Raman Photoluminescence (Raman PL) 21 2.4.5 Ultraviolet-Visible Spectrophotometry (UV-Vis) 23 2.4.6 X-Ray Photoelectron Spectroscopy (XPS) 24 2.4.7 Gas Chromatography 26 Chapter III Result and Discussion 28 3.1 Microscopy Based Characterization for MoS2 thin film morphology 28 3.2 Spectroscopy Based Characterization 30 Chapter IV Conclusion and Future Outlook 45 4.1 Conclusion 46 4.2 Future Outlook 47 References 48

[1] H.R.a.M. Roser, CO₂ and other Greenhouse Gas Emissions, Our world in data, DOI (2018).
[2] Q. Ma, R.H. Tipping, The distribution of density matrices over potential-energy surfaces: Application to the calculation of the far-wing line shapes for CO2, The Journal of Chemical Physics, 108 (1998) 3386-3399.
[3] Z. HAUSFATHER, Analysis: Global CO2 emissions set to rise 2% in 2017 after three-year ‘plateau’, Carbon Brief, China, 2000.
[4] Z.H. Lee, K.T. Lee, S. Bhatia, A.R. Mohamed, Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials, Renewable and Sustainable Energy Reviews, 16 (2012) 2599-2609.
[5] I. Shown, S. Samireddi, Y.-C. Chang, R. Putikam, P.-H. Chang, A. Sabbah, F.-Y. Fu, W.-F. Chen, C.-I. Wu, T.-Y. Yu, P.-W. Chung, M.C. Lin, L.-C. Chen, K.-H. Chen, Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light, Nature Communications, 9 (2018) 169.
[6] E. Karamian, S. Sharifnia, On the general mechanism of photocatalytic reduction of CO2, 2016.
[7] A. Álvarez, M. Borges, J. Corral-Pérez Juan, G. Olcina Joan, L. Hu, D. Cornu, R. Huang, D. Stoian, A. Urakawa, CO2 Activation over Catalytic Surfaces, ChemPhysChem, 18 (2017) 3135-3141.
[8] A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chemical Reviews, 95 (1995) 735-758.
[9] A. Furube, T. Asahi, H. Masuhara, H. Yamashita, M. Anpo, Charge Carrier Dynamics of Standard TiO2 Catalysts Revealed by Femtosecond Diffuse Reflectance Spectroscopy, The Journal of Physical Chemistry B, 103 (1999) 3120-3127.
[10] A. Fujishima, X. Zhang, D.A. Tryk, Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup, International Journal of Hydrogen Energy, 32 (2007) 2664-2672.
[11] P.V. Kamat, Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design, The Journal of Physical Chemistry Letters, 3 (2012) 663-672.
[12] N. Habisreutinger Severin, L. Schmidt-Mende, K. Stolarczyk Jacek, Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors, Angewandte Chemie International Edition, 52 (2013) 7372-7408.
[13] A.K. Geim, Graphene: Status and Prospects, Science, 324 (2009) 1530.
[14] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2, Nature Nanotechnology, 8 (2013) 497.
[15] X. Ling, H. Wang, S. Huang, F. Xia, M.S. Dresselhaus, The renaissance of black phosphorus, Proceedings of the National Academy of Sciences, 112 (2015) 4523.
[16] Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure, Science, 317 (2007) 932.
[17] Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, W. Chen, Two-dimensional transition metal dichalcogenides: interface and defect engineering, Chemical Society Reviews, 47 (2018) 3100-3128.
[18] W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications, Materials Today, 20 (2017) 116-130.
[19] F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics, Nature Photonics, 8 (2014) 899.
[20] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging Photoluminescence in Monolayer MoS2, Nano Letters, 10 (2010) 1271-1275.
[21] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from Chemically Exfoliated MoS2, Nano Letters, 11 (2011) 5111-5116.
[22] D. Jariwala, A.R. Davoyan, J. Wong, H.A. Atwater, Van der Waals Materials for Atomically-Thin Photovoltaics: Promise and Outlook, ACS Photonics, 4 (2017) 2962-2970.
[23] A.A. Al-Hilli, B.L. Evans, The preparation and properties of transition metal dichalcogenide single crystals, Journal of Crystal Growth, 15 (1972) 93-101.
[24] J. Mercier, Recent developments in chemical vapor transport in closed tubes, Journal of Crystal Growth, 56 (1982) 235-244.
[25] M.P. Levendorf, C.-J. Kim, L. Brown, P.Y. Huang, R.W. Havener, D.A. Muller, J. Park, Graphene and boron nitride lateral heterostructures for atomically thin circuitry, Nature, 488 (2012) 627.
[26] H. Hadouda, J. Pouzet, J.C. Bernede, A. Barreau, MoS2 thin film synthesis by soft sulfurization of a molybdenum layer, Materials Chemistry and Physics, 42 (1995) 291-297.
[27] W.K. Hofmann, Thin films of molybdenum and tungsten disulphides by metal organic chemical vapour deposition, Journal of Materials Science, 22 (1988).
[28] N.D. Boscher, C.S. Blackman, C.J. Carmalt, I.P. Parkin, A.G. Prieto, Atmospheric pressure chemical vapour deposition of vanadium diselenide thin films, Applied Surface Science, 253 (2007) 6041-6046.
[29] P.D. Tran, Thu V. Tran, M. Orio, S. Torelli, Q.D. Truong, K. Nayuki, Y. Sasaki, Sing Y. Chiam, R. Yi, I. Honma, J. Barber, V. Artero, Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide, Nature Materials, 15 (2016) 640.
[30] Z. Huang, W. Luo, L. Ma, M. Yu, X. Ren, M. He, S. Polen, K. Click, B. Garrett, J. Lu, K. Amine, C. Hadad, W. Chen, A. Asthagiri, Y. Wu, Dimeric [Mo2S12]2− Cluster: A Molecular Analogue of MoS2 Edges for Superior Hydrogen-Evolution Electrocatalysis, Angewandte Chemie International Edition, 54 (2015) 15181-15185.
[31] D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution, Nature Materials, 12 (2013) 850.
[32] J. Kibsgaard, T.F. Jaramillo, F. Besenbacher, Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters, Nature Chemistry, 6 (2014) 248.
[33] E.S. Andreiadis, P.-A. Jacques, P.D. Tran, A. Leyris, M. Chavarot-Kerlidou, B. Jousselme, M. Matheron, J. Pécaut, S. Palacin, M. Fontecave, V. Artero, Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H2 evolution under fully aqueous conditions, Nature Chemistry, 5 (2012) 48.
[34] L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, Y. Yang, MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution, Energy & Environmental Science, 11 (2018) 106-114.
[35] W. Tu, Y. Li, L. Kuai, Y. Zhou, Q. Xu, H. Li, X. Wang, M. Xiao, Z. Zou, Construction of unique two-dimensional MoS2–TiO2 hybrid nanojunctions: MoS2 as a promising cost-effective cocatalyst toward improved photocatalytic reduction of CO2 to methanol, Nanoscale, 9 (2017) 9065-9070.
[36] Y. Li, Y.-L. Li, C.M. Araujo, W. Luo, R. Ahuja, Single-layer MoS2 as an efficient photocatalyst, Catalysis Science & Technology, 3 (2013) 2214-2220.
[37] E. Parzinger, B. Miller, B. Blaschke, J.A. Garrido, J.W. Ager, A. Holleitner, U. Wurstbauer, Photocatalytic Stability of Single- and Few-Layer MoS2, ACS Nano, 9 (2015) 11302-11309.
[38] M. Ruinart de Brimont, C. Dupont, A. Daudin, C. Geantet, P. Raybaud, Deoxygenation mechanisms on Ni-promoted MoS2 bulk catalysts: A combined experimental and theoretical study, Journal of Catalysis, 286 (2012) 153-164.
[39] X. Li, H. Zhu, Two-dimensional MoS2: Properties, preparation, and applications, 2015.
[40] S.V.P. Vattikuti, C. Byon, Molybdenum Disulfide-Based Photocatalysis:Bulk-to-Single Layer Structure and Related Photomechansim for Environmental Applications, 2017.
[41] Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, L.-J. Li, Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization, Nanoscale, 4 (2012) 6637-6641.
[42] D. Guan, J. Li, X. Gao, C. Yuan, Effects of amorphous and crystalline MoO3 coatings on the Li-ion insertion behavior of a TiO2 nanotube anode for lithium ion batteries, RSC Advances, 4 (2014) 4055-4062.
[43] R. Coehoorn, C. Haas, R.A. de Groot, Electronic structure of ${\mathrm{MoSe}}_{2}$, ${\mathrm{MoS}}_{2}$, and ${\mathrm{WSe}}_{2}$. II. The nature of the optical band gaps, Physical Review B, 35 (1987) 6203-6206.
[44] T.J. Wieting, J.L. Verble, Infrared and Raman Studies of Long-Wavelength Optical Phonons in Hexagonal Mo${\mathrm{S}}_{2}$, Physical Review B, 3 (1971) 4286-4292.
[45] C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous Lattice Vibrations of Single- and Few-Layer MoS2, ACS Nano, 4 (2010) 2695-2700.
[46] Y. Cheng, Z. Zhu, U. Schwingenschlögl, Role of interlayer coupling in ultra thin MoS2, RSC Advances, 2 (2012) 7798-7802.
[47] S. Patil, A. Harle, S. Sathaye, K. Patil, Development of a novel method to grow mono-/few-layered MoS2 films and MoS2–graphene hybrid films for supercapacitor applications, CrystEngComm, 16 (2014) 10845-10855.
tttimtimeti
[49] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films, Scientific Reports, 4 (2014) 4043.

QR CODE