簡易檢索 / 詳目顯示

研究生: 兆天佑
Tian-yo Chao
論文名稱: 在IEEE 802.11e無線網路傳輸可調性視訊之動態優先權調整機制
Improving Scalable Video Transmission over IEEE 802.11e through a Dynamic Priority Adjustment Mechanism
指導教授: 陳省隆
Hsing-lung Chen
口試委員: 莊博任
Po-jen Chuang
陳郁堂
Yie-tarng Chen
陳維美
Wei-mei Chen
阮聖彰
Shanq-jang Ruan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 31
中文關鍵詞: 可調性視訊編碼IEEE 802.11e可調性視訊傳輸跨層架構優先權
外文關鍵詞: Scalable Video coding, IEEE 802.11e, Scalable Video Transmission, Cross-layer Architecture, Priority
相關次數: 點閱:316下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Joint Video Team (JVT) 針對H.264/AVC提出了可調性視訊編碼 (Scalable Video Coding, SVC) 的修正草案,H.264/SVC。經過H.264/SVC編碼後的視訊,可分成與H.264/AVC相容的基礎層與具備可調性的增強層。可調性視訊能讓不同的用戶端,依據本身的狀況或網路的頻寬獲得所需的視訊品質。
    本篇論文針對H.264/SVC在IEEE 802.11e傳輸的情況進行探討,並結合網路摘要層 (Network Abstraction Layer) 提出建立於IEEE 802.11e媒介存取控制層的動態優先權調整機制的跨層架構,依據可調性視訊封包的重要性提供差異性服務。網路模擬器Qualnet 4.0模擬的結果,証明我們提出的方法可提供較佳的影像品質。


    The scalable extension of H.264/AVC, called H.264/SVC, is a current standardization project of Joint Video Team (JVT). An encoded SVC bitstream consists of an H.264/AVC-compatible base layer and one or more scalable enhance layers. In order to meet requirements of various clients, some scalable enhance layers can be truncated.

    This thesis focuses on the investigation of H.264/SVC transmission over IEEE 802.11e through a Cross-layer Architecture. The Cross-layer Architecture, which interacts Network Abstraction Layer and Dynamic Priority Adjustment Mechanism based on IEEE 802.11e MAC layer, provides differentiated services according to the importance of scalable video packets. The simulations are conducted with Qualnet 4.0. The simulation results show that our approach provides better video quality.

    第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目標 3 1.3 論文架構 4 第二章 相關研究 5 2.1 H.264/MPEG-4 SVC可調性修正草案 5 2.2 IEEE 802.11e EDCA無線網路 8 2.3 跨層視訊傳輸 10 第三章 跨層可調性視訊傳輸機制 11 3.1 SVC 視訊編碼層與網路摘要層 11 3.2 IEEE 802.11e 媒介存取控制層 14 3.3 動態優先權調整機制 15 第四章 模擬結果與數據分析 21 4.1 可調性視訊傳輸模擬架構 21 4.2 模擬環境與參數設定 23 4.3 模擬結果與分析 24 第五章 結論與未來展望 30

    [1] IEEE Std 802.11g-2003, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.
    [2] Draft Std 802.11n, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Amendment : Enhancements for Higher Throughput, IEEE Draft Std P802.11n/D2.00, Feb. 2007.
    [3] IEEE Std 802.11e-2005, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements.
    [4] ITU-T Recommendation H.264 & ISO/IEC 14496-10AVC, “Advanced Video Coding for Generic Audiovisual Services”, Version 3, 2005.
    [5] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stockhammer, and T. Wedi, “Video coding with H.264/AVC: tools, performance, and complexity”, IEEE Circuits and Systems Magazine, vol. 4, no. 1, pp. 7-28, 2004.
    [6] J. Golston, D. Member, and A. Rao, “Video Compression: System Trade-offs with H.264, VC-1 and Other Advanced CODECs”, TEXAS INSTRUMENTS White Paper, Aug. 2006.
    [7] T.Wiegand, G. Sullivan, J. Reichel, H. Schwarz, M. Wien (eds.), “Joint Draft 9 of SVC Amendment”, Marrakech, Morocco, Jan. 2007.
    [8] H. Schwarz, D. Marpe, and T. Wiegand, “SNR-Scalable Extension of H.264/AVC”, IEEE ICIP 2004, Singapore, Oct. 2004.
    [9] H. Schwarz, D. Marpe, T. Schierl, and T. Wiegand, “Combined Scalability Support for the Scalable Extension of H.264/AVC”, IEEE ICME 2005, Amsterdam, The Netherlands, July 2005.
    [10] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable H.264/MPEG4-AVC Extension”, IEEE ICIP 2006, Atlanta, GA, USA, Oct. 2006.
    [11] JSVM 8 Reference Software, JVT-U202, Hangzhou, China, Oct. 2006.
    [12] Qualnet 4.0, http://www.scalable-networks.com/
    [13] 李柏青, 在IEEE 802.11e無線網路傳輸可調性視訊之動態優先權調整機制, 國立台灣科技大學電子工程研究所, July 2007.
    [14] IEEE Std 802.11a-1999, Part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: high-speed physical layer in the 5 GHz band, Vol., Iss., 1999.
    [15] IEEE Std 802.11b-1999, Part 11: Wireless LAN Medium Access Control (MAC) And Physical Layer (PHY) Specifications: Higher-speed Physical Layer Extension In The 2.4 GHz Band, Vol., Iss., 2000.
    [16] M. van Der Schaar and S. N. Sai, “Cross-layer Wireless Multimedia Transmission: Challenges, Principle, and New Paradigms”, IEEE Wireless Communications [see also IEEE Personal Communications], Vol. 12, no. 4, pp. 50-58, 2005.
    [17] A. Ksentini, M. Naimi, and A. Gueroui, “Toward an Improvement of H.264 Video Transmission over IEEE 802.11e through a Cross-layer Architecture”, IEEE Communications Magazine, Vol. 44, no. 1, pp. 107-114, 2006.
    [18] A. Ksentini, A. Gueroui, and M. Naimi, “Improving H.264 Video Transmission in 802.11e EDCA”, IEEE ICCCN 2005, San Diego, USA, 2005.
    [19] Y. K. Wang, M. M. Hannuksela, S. Pateux, A. Eleftheriadis, “Syatem and Transport Interface of Emerging SVC Standard”, Joint Video Team (JVT), Doc. JVT-U151, Hangzhou, China, Oct. 2006.
    [20] H. C. Huang, W. H. Peng, T. Chiang, and H. M. Hang, “Advances in the scalable amendment of H.264/AVC”, IEEE Communications Magazine, Vol. 45, Iss. 1, pp. 68-76, Jan. 2007.
    [21] A. Kamerman and L. Monteban, “WaveLan-II: A High-performance wireless Lan for the unlicensed band”, Bell Lab Technical Journal, pp. 118-133, 1997.
    [22] C. Ying, X. Kai, Z. Feng, P. Purvin, and B. Jill, “Frame loss error concealment for SVC”, Journal of Zhejiang University, Vol. 7, Apr. 2006.
    [23] K. Xu, Quanhong Wang, H. Hassanein, “Performance analysis of differentiated QoS supported by IEEE 802.11e enhanced distributed coordination function (EDCF) in WLAN”, Global Telecommunications Conference, 2003. IEEE, Vol.2, Iss., 1-5, pp. 1048-1053, Dec. 2003.

    QR CODE