簡易檢索 / 詳目顯示

研究生: 王際濤
Chi-Tao Wang
論文名稱: 以RANS紊流模型探討理想化都市建築群之通風效應
Research on Ventilation Effects of Idealized Urban Building Groups Using the RANS Turbulence Model
指導教授: 陳瑞華
Rwey-Hua Cherng
黎益肇
Yi-Chao Li
口試委員: 黃慶東
Chin-Tung Huang
鄭蘩
Van Jeng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 138
中文關鍵詞: 計算流體力學容積率路寬行人風場行人熱舒適度形態測定法
外文關鍵詞: Computational Fluid Dynamic, Floor Area Ratio, Road Width, Pedestrian Wind Field, Pedestrian Thermal Comfort, Morphometric Method
相關次數: 點閱:263下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    隨著各國都市的高速發展,使得都市熱島效應加劇;要能有效率且低耗能得降低溫度,並提升行人熱舒適度,利用建築配置引進自然通風為都市熱島效應的解方之一。另外,於都市通風分析時,地表型態特性的掌握十分重要,使用人工判斷的方式決定地表型態參數,需要更完善的分析方法來給定合理且客觀的值。因此本研究使用CFD數值模擬在理想化建築群的配置下,分析路寬、建築高等參數,對於行人風場的影響,並在入流風向跟道路平行的條件下利用六種型態(建築幾何)經驗公式(形態測定法,Morphometric method)與CFD結果進行誤差分析,期望找出能良好掌握地表型態參數且客觀的方法。研究大致可分三個部分,第一部分為使用CFD進行理想化建築群的行人風場分析,其中又分為正方形斷面及長條形斷面。理想化正方形斷面建築群與長條形斷面建築群在入流風向與道路走向越接近平行,整體的風速均會越大,另外,在容積率固定的前提下,增加路寬且增加建築高度能使整體的風速提升。而長條形斷面建築群在入流風向與短邊道路走向接近平行時,氣流較難進入建築群中;在入流風向與長邊道路走向接近平行時,由於入流風主導氣流,加上渠化效應的輔助,可使氣流更集中的進入建築群內。第二部分為行人熱舒適度的評估,將CFD的入流設定為板橋測站風速資料可以看到,板橋測站的夏季風速於夏季日均溫29°c時,在理想化建築群中均難以達到行人熱舒適的標準。而於夏季夜晚均溫28°c時,正方形斷面的情況下路寬調整為16m以上可在入流風向與斷面夾角?=0°及22.5°時達到行人熱舒適度的標準。而在長條形斷面的情況下路寬為8m或以上於入流風向與斷面短邊之道路走向夾角?=45°、67.5°、90°均可達到行人熱舒適度的標準。第三部分為形態測定法分析,利用CFD模擬入流跟理想化建築群道路平行的條件下,發展完全的大氣邊界層與形態測定法公式求得的風速剖面進行擬合比較,其中Macdonald et al.所提出的形態測定方法平均誤差是最小的,能很好的擬合CFD模擬發展的邊界層剖面。


    Abstract
    With the rapid development of cities in various countries, the urban heat island effect has intensified; in order to reduce the temperature efficiently and consume less energy, and improve the thermal comfort of pedestrians, using building configuration to introduce natural ventilation is one of the solutions to the urban heat island effect. In addition, in the analysis of urban ventilation, it is very important to grasp the characteristics of the surface type. Using manual judgment to determine the parameters of the surface type requires a more complete analysis method to give reasonable and objective values. Therefore, this study uses CFD numerical simulation to analyze the impact of parameters such as road width and building height on the wind field of pedestrians under the configuration of idealized building groups, and uses six types (building geometry) under the condition that the inflow wind direction is parallel to the road. The empirical formula (morphometric method) and CFD results are used for error analysis, hoping to find an objective method that can well grasp the surface type parameters. The research can be roughly divided into three parts. The first part is to use CFD to analyze the pedestrian wind field of idealized buildings, which is divided into square sections and strip sections. The closer the inflow wind direction and the road direction of the idealized square-section building group and the strip-section building group are, the greater the overall wind speed will be. In addition, under the premise of a fixed floor area ratio, increasing the road width and building height can make overall wind speed increased. However, when the inflow wind direction is nearly parallel to the direction of the short-side road in the long-section building group, it is difficult for the airflow to enter the building group; The auxiliary can make the airflow more concentrated into the building complex. The second part is the evaluation of thermal comfort of pedestrians. The inflow of CFD is set as the wind speed data of Banqiao station. It can be seen that the summer wind speed of Banqiao station is in the ideal building group when the average daily temperature in summer is 29°C. It is difficult to meet the standard of thermal comfort for pedestrians. In summer, when the average temperature at night is 28°C, adjusting the road width to more than 16m in the case of a square section can meet the thermal comfort standard for pedestrians when the angle between the inflow wind direction and the section is ?=0° and 22.5°. In the case of a long section, the road width is 8m or more, and the angle ?=45°, 67.5°, and 90° between the inflow wind direction and the short side of the section can meet the standard of pedestrian thermal comfort. The third part is the morphometric analysis. Under the condition that the inflow simulated by CFD is parallel to the road of the idealized building group, the fully developed atmospheric boundary layer is compared with the wind speed profile obtained by the morphometric formula. Among them, Macdonald et al. The proposed morphometric method has the smallest average error and can well fit the boundary layer profile developed by CFD simulations.

    目錄 摘要 I Abstract III 誌謝 VI 目錄 VIII 表目錄 XI 圖目錄 XIII 第一章 緒論 1 1.1研究動機及目的 1 1.2論文架構 2 第二章 文獻回顧 3 2.1 CFD於都市風環境應用 3 2.2都市通風評估 4 2.3行人熱舒適度 5 2.4大氣邊界層 6 2.4.1指數律風速剖面 6 2.4.2對數律風速剖面 7 2.4.3型態測定法 9 第三章 研究方法 13 3.1控制方程式 13 3.2紊流模型 15 3.2.1 Standard k-ε模型 15 3.2.2 Realizable k-ε模型 16 3.2.3 RNG k-ε模型 17 3.3入流條件 18 3.4初始條件 19 第四章 模式驗證 20 4.1 OpenFOAM建立網格 20 4.2 AIJ CaseC簡介 21 4.3模型及計算域 22 4.4空流場分析 22 4.5網格相依性分析 24 4.6 模擬驗證 25 第五章 理想化建築群之通風效應 29 5.1模型設計及計算域介紹 29 5.2參數設定及分析區域 30 5.3 理想化建築群之行人風場分析 30 5.4行人熱舒適度評估 34 5.5型態測定法分析 37 5.5.1分析區域 37 5.5.2擬合對數律風速剖面 38 5.5.3型態測定法結果分析 38 第六章 結論與建議 41 6.1結論 41 6.2建議 42 參考文獻 95 附錄A:blockMeshDict文檔 98 附錄B:snappyHexMeshDict文檔 105

    參考文獻
    1. Yuan, C. and Ng, E., Building porosity for better urban ventilation in
    high-density cities–A computational parametric study. Building and
    Environment, 2012. 50: p. 176-189.
    2. Lee, R.X., Jusuf, S.K., and Wong, N.H., The study of height variation
    on outdoor ventilation for Singapore's high-rise residential housing
    estates. International Journal of Low-Carbon Technologies, 2015.
    10(1): p. 15-33.
    3. 方富民、陳瑞鈴、黎益肇、陳建忠、郭建源, 都市地區行人風環境
    之 CFD 模擬與風洞實驗比對研究. 建築學報, 2018(103): p. 17
    34.
    4. Ng, E., Policies and technical guidelines for urban planning of high
    density cities–air ventilation assessment (AVA) of Hong Kong.
    Building and environment, 2009. 44(7): p. 1478-1488.
    5. Kubota, T., Miura, M., Tominaga, Y., and Mochida, A., Wind tunnel
    tests on the relationship between building density and pedestrian-level
    wind velocity: Development of guidelines for realizing acceptable
    wind environment in residential neighborhoods. Building and
    environment, 2008. 43(10): p. 1699-1708.
    6. Givoni, B., Noguchi, M., Saaroni, H., Pochter, O., Yaacov, Y., Feller,
    N., and Becker, S., Outdoor comfort research issues. Energy and
    buildings, 2003. 35(1): p. 77-86.
    7. Givoni, B., Khedari, J., and Hirunlabh, J. Comfort formula for
    Thailand. in proceedings of the solar conference. 2004. American
    Solar Energy Society; American Institute Of Architects.
    8. 朱佳仁, 風工程概論. 2006: 科技圖書股份有限公司.
    9. Kent, C.W., Grimmond, S., Barlow, J., Gatey, D., Kotthaus, S.,
    Lindberg, F., and Halios, C.H., Evaluation of urban local-scale
    aerodynamic parameters: implications for the vertical profile of wind
    speed and for source areas. Boundary-Layer Meteorology, 2017. 164:
    p. 183-213.
    10. Grimmond, C.S.B. and Oke, T.R., Aerodynamic properties of urban
    areas derived from analysis of surface form. Journal of Applied
    Meteorology and Climatology, 1999. 38(9): p. 1262-1292.
    11. Wieringa, J., New revision of Davenport roughness classification.
    Proc., 3EACWE, Eindhoven, The Netherlands, 2001: p. 285-292.
    12. Stewart, I.D. and Oke, T.R., Local climate zones for urban temperature
    studies. Bulletin of the American Meteorological Society, 2012. 93(12):
    p. 1879-1900.
    13. Grimmond, C., King, T., Roth, M., and Oke, T., Aerodynamic
    roughness of urban areas derived from wind observations. Boundary
    Layer Meteorology, 1998. 89: p. 1-24.
    14. Rotach, M., Determination of the zero plane displacement in an urban
    environment. Boundary-Layer Meteorology, 1994. 67(1-2): p. 187
    193.
    15. Raupach, M.R., Antonia, R.A., and Rajagopalan, S., Rough-wall
    turbulent boundary layers. 1991.
    16. Bottema, M. and Mestayer, P.G., Urban roughness mapping–validation
    techniques and some first results. Journal of Wind Engineering and
    Industrial Aerodynamics, 1998. 74: p. 163-173.
    17. Bottema, M., Aerodynamic roughness parameters for homogeneous
    building groups-Part 2: Results. Document Sub-Meso, 1995. 23.
    18. Macdonald, R., Griffiths, R., and Hall, D., An improved method for
    the estimation of surface roughness of obstacle arrays. Atmospheric
    environment, 1998. 32(11): p. 1857-1864.
    19. Millward-Hopkins, J., Tomlin, A., Ma, L., Ingham, D., and
    Pourkashanian, M., Estimating aerodynamic parameters of urban-like
    surfaces with heterogeneous building heights. Boundary-layer
    meteorology, 2011. 141: p. 443-465.
    20. Kanda, M., Inagaki, A., Miyamoto, T., Gryschka, M., and Raasch, S.,
    A new aerodynamic parametrization for real urban surfaces.
    Boundary-layer meteorology, 2013. 148(2): p. 357-377.
    21. Caretto, L., Gosman, A., Patankar, S., and Spalding, D. Two
    calculation procedures for steady, three-dimensional flows with
    recirculation. in Proceedings of the Third International Conference on
    Numerical Methods in Fluid Mechanics: Vol. II Problems of Fluid
    Mechanics. 1973. Springer.
    22. Richards, P. and Hoxey, R., Appropriate boundary conditions for
    computational wind engineering models using the k-ϵ turbulence
    model. Journal of wind engineering and industrial aerodynamics, 1993.
    46: p. 145-153.
    23. Mochida, A., Tominaga, Y., Ishida, Y., Ishihara, T., Uehara, K.,
    Kataoka, H., Kurabuchi, T., Kobayashi, N., Ooka, R., and Shirasawa,
    T., AIJ Benchmarks for Validation of CFD Simulations Applied to
    Pedestrian Wind Environment around Buildings. Architectural
    Institute of Japan: Tokyo, Japan, 2016.
    24. Schatzmann, M., Olesen , H., and Franke , J., COST 732 Model
    Evaluation Case Studies: Approach and Results. 2010.
    25. 新北市政府變更板橋細部計畫土地使用分區管制要點之規定, 新
    北市政府. 2020.
    26. ASCE7. Minimum Design Loads And Associatnd Criteria For
    Buildings And Other Structures. 2016.
    27. 江桐, 國土測繪資訊應用於都市通風廊道模擬,碩士論文,國立臺
    灣科技大學.2022.

    無法下載圖示 全文公開日期 2028/08/28 (校內網路)
    全文公開日期 2033/08/28 (校外網路)
    全文公開日期 2033/08/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE