簡易檢索 / 詳目顯示

研究生: 劉穎聰
Ying-Tsung Liu
論文名稱: 從曼陀羅種子中生產生質柴油
Production of Biodiesel from Datura stramonium Seeds
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: Suryadi Ismadji
Suryadi Ismadji
Truong Chi Thanh
Truong Chi Thanh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 63
中文關鍵詞: 蔓陀蘿種子生質柴油脂肪酸中性脂質次臨界水甲醇醋酸
外文關鍵詞: Datura stramonium seeds, biodiesel, fatty acid, neutral lipids, subcritical water, methanol, acetic acid.
相關次數: 點閱:461下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本研究中,次臨界水前處理被用來最佳化曼陀羅種子中脂質的萃取。在此研究中探討處理溫度(150, 175 or 200 oC)、含水量(2, 5 or 10 mL/g biomass)和反應時間的(15, 30 or 60 min)對於脂質產率的影響。結果顯示在175 oC 下、5 mL 的水及反應時間15 分鐘的條件下可以得到最大脂質產率為(35.64 %, w/w)。

沒有經過次臨界水前處理的可萃取的脂質含量為17.33%。然而,經及未經次臨界水前處理的脂肪酸的分佈,沒有顯著的差異。

曼陀羅種子與直接與甲醇及水在次臨界狀態下(250 oC, 40 bar)反應,醋酸的效果在此原位點轉酯化反應中被探討。結果顯示此方法能在合理的時間內達到高的生質柴油產率。


In this study, subcritical water treatment was used to maximize lipid extraction from Datura stramonium seeds. The effects of temperature (150, 175 or 200 oC), amount of water (2, 5 or 10 mL/g biomass) and time (15, 30 or 60 min) on lipid yield were studied. The results show that maximum amount of extracted lipid (35.64 %, w/w) could be achieved after the seeds were treated by subcritical water at 175 oC using 5 mL water for 15 min. The maximum lipid extracted from seeds without subcritical treatment was 17.33%. However, there is no observable difference between the fatty acid profiles of neutral lipids obtained from seeds with and without subcritical water treatment.
Datura stramonium seeds were reacted directly with methanol and acetic acid under subcritical condition (250 oC, 40 bar). The effect of adding acetic acid to in-situ transesterification reaction was studied. Result shows that this proposed method was able to give high biodiesel yield in reasonably short time.

Table of Contents Abstract (Chinese)……………………………………………………………………..I Abstract (English) ………………………………………………………………….…II Acknowledgement …………………………………………………………………...III Table of Contents ……………………………………………………………………IV List of Figures……………………………………………………………………….VII List of Tables……………………………………………………………..…………..IX Chapter 1. Introduction………………………………………………………………..1 1.1. Background of this study….......................................................................1 1.2. Objective of this study…...………………………………………………4 Chapter 2. Review of Related Literature………… …………………………...………5 2.1. Thorn apple (Datura stramonium)...…………..………………………...5 2.2. Maximizing extractable lipids...…………..………………………….….7 2.2.1 Size Reduction...……..………………………………………..……7 2.2.2 Sub and supercritical solvents...……..………………..……………7 2.3. Subcritical water and its characteristics……………………………...….8 2.4. In-situ and catalyst free methods of biodiesel production..……….…….9 2.4.1 In-situ (trans)esterification..………………………….…………….9 2.4.2 Supercritical alcohols (trans)esterification..………..………….….10 2.4.3 Two-step supercritical (trans)esterification..………………...……12 2.4.4 In-situ SCW-methanol (trans)esterification…………………….…13 2.4.5 In-situ supercritical (trans)esterification…………...………….…14 Chapter 3. Materials and Methods……………………………...……………………16 3.1. Materials…………………………………………………...…………...16 3.2. Characterization of seed and oil………………….…………………….16 3.2.1 Moisture content of seeds…………………………………………16 3.2.2 Crude lipid content of seed………………………………………..16 3.2.3 Lipid characterization…………………………………………..…17 3.3. Subcritical water-pretreatment………………………………....………19 3.4. Scanning electron microscope (SEM) imaging…………….…………..21 3.5. Gas chromatography analysis………………………………..…………21 3.6 In-situ subcritical acetic acid assisted transesterification……………….22 3.7 In-situ acid-base catalyzed transesterification……………..……………23 Chapter 4. Results and Discussion………………………………...…………………26 4.1. Improving oil yield and productivity…………………………………29 4.1.1 Effects of seed pretreatment method……………………………...30 4.1.2 Effects of temperature and particle size on SCW pretreatment…..36 4.1.3 Effects of water loading and time on SCW pretreatment…………38 4.1.4 Effect of SCWpretreatment on oil quality………………………...39 4.2 In-situ transesterification of Datura stramonium oil……………………………..42 4.2.1 Effects of different in-situ methods on biodiesel production from D. stramonium…………………………………………………………………………...42 Chapter 5. Conclusions………………………………………………………………47 References……………………………………………………………………..……..48   List of Figures Figure 2.1. Distribution of Datura stramonium L. across the world………………….5 Figure 2.2 Datura stramonium L. A. habit, upper part of plant B. cauline leaf; C. ripe capsule; D. seeds………………………………………………………………………6 Fig. 3.1 Flowchart for saponification and fatty acid profile determination procedure………………………………………………………………………….….19 Fig. 3.2 Subcritical Water Reactor (1. Nitrogen gas cylinder, 2. safety valve, 3. Check valve, 4. Inlet valve 5. Pressure gauge, 6. Filter, 7. Outlet valve, 8. Reactor, 9. Glass chamber)……………………………………………………………………………..20 Fig. 3.3 Flowchart for acid/base catalyzed in-situ transesterification process……………………………………………………………………….……….25 Fig. 4.1. Effects of various pretreatment on D. stramonium crude oil yield…………………………………………………………………………………..33 Fig. 4.2. SEM images of D. stramonium whole seeds (x50 top row, x500 right bottom row, 5kV). Untreated seeds (a and b); SCW treated at 175 °C for 15 min (c and d) after extraction………………………………………………………….................….34 Fig. 4.3. SEM images of D. stramonium whole seeds (x50 magnification, 5kV) treated for 15 min, using: a. SCW; b. direct ultrasonication; c. indirect ultrasonication; d. grinding with mortar and pestle………………………………………….………..35 Fig. 4.4. SEM images of D. stramonium kernel (x500 magnification, 5kV) treated with SCW at 175 °C for 15 min. From left to right: untreated, treated but unextracted, treated and extracted………………………………………………………….………35 Fig. 4.5. Effects of temperature and particle size on D. stramonium crude oil yield, SCW pretreated for 15 min at solid to water ratio = 1:5. Results are average of duplicate experiments and calculations were based on initial biomass used…………………………………………………………………………………...37 Fig. 4.6. Effects of water loading on DSO yield, SCW pretreated at 175 °C for 15 min……………………………………………………………………………………38 Fig. 4.7. Effects of time on DSO yield, SCW pretreated at 175 °C and a solid to water ratio of 1:5……………………………………………………………………………39 Fig. 4.8. Effects of SCW pretreatment (175 °C, 15 min) on DSO quality…………...40 Fig. 4.9. A step-by-step comparison of various biodiesel production method from D. stramonium using conventional and in-situ processes………………….…………....45   List of Tables Table 4.1. Composition of crude D. stramonium lipids……………………………...26 Table 4.2. Typical fatty acid profile (wt. %) of oils used to produce biodiesel…...…28 Table 4.3. Compositions of extracted lipids from pretreated seed samples…….……41 Table 4.4. Fatty acids profiles of lipids from pretreated seed samples..…..…………42 Table 4.5. In-situ transesterification of D. stramonium seeds……………………….43

Reference
Alenezi R., G.A. Leeke, R.C.D. Santos, A.R. Khan. Hydrolysis kinetics of sunflower oil under subcritical water conditions. Chemical Engineering Research and Design 87 (2009) 867–873
Alrawi R.A., A. Ahmad, N. Ismail, M. Omar, A. Kadir. Anaerobic co-digestion of palm oil mill effluent with rumen fluid as a co-substrate. Desalination 269 (2011) 50–57.
Atabania A.E., A.S. Silitonga, I.A. Badruddina, T.M.I. Mahliaa, H.H. Masjukia, S. Mekhilefd. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews 16 (2012) 2070– 2093
Blum RM. Society and drugs. San Francisco: Jossey-Bass; 1969 [p. 122–4].
Brunner G. Gas extraction : an introduction to fundamentals of supercritical fluids and the application to separation processes. Darmstadt : Steinkopff ; New York : Springer, ©1994.
Brunner G. Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. Journal of Supercritical Fluids 47 (2009) 373–381
Changi S., T.M. Brown, P.E. Savage. Reaction kinetics and pathways for phytol in high-temperature water. Chemical Engineering Journal 189– 190 (2012) 336–345
Cheng L., X. P. Ye, R. He, S. Liu. Investigation of rapid conversion of switchgrass in subcritical water. Fuel Processing Technology (2009) 301-311
Demirbas A., Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management 50 (2009) 923–927
Georgogiannia K.G., M.G. Kontominasa, P.J. Pomonisa, D. Avlonitisb, V. Gergisc. Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Processing Technology (2008) 503-509
Haas M. J. and K.M. Scott, Moisture removal substantially improves the efficiency of in-situ biodiesel production from soybeans. Journal of the American Oil Chemists’ Society, 84: (2007) 197-204
Herrero M., A. Cifuentes, E. Iban˜ez. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae A review. Food Chemistry 98 (2006) 136–148
Holliday R.L., B.Y.M. Jong, J.W. Kolis. Organic synthesis in subcritical water oxidation of alkyl aromatics. Journal of Supercritical Fluids 12 (1998) 255–260

Holm L.R.G., J. Doll, E. Holm, J. Pancho, J. Herberger. World weeds: natural histories and distribution. John Wiley & Sons Inc; 1997 [p. 273–6].
Huynh L.H., N.S. Kasim, Y.H. Ju. Extraction and analysis of neutral lipids from activated sludge with and without sub-critical water pre-treatment. Bioresource Technology 101 (2010) 8891–8896
Huynh L.H., P.L. Tran Nguyen, Q.P. Ho, Y.H. Ju. Catalyst-free fatty acid methyl ester production from wet activated sludge under subcritical water and methanol condition. Bioresource Technology 123 (2012) 112–116
Ju Y.H., L.H. Huynh, Y.A. Tsigie, Q.P. Ho. Synthesis of biodiesel in subcritical water and methanol. Fuel 105 (2013) 266–271
Koria L. and T. Thangaraj. Optimization of biodiesel production process in Datura
stramonium seed oil, a non-edible oil source. Journal of Ecobiotechnology 2/5: 42-46, 2010
Kruse A., E. Dinjus. Hot compressed water as reaction medium and reactant properties and synthesis reactions. Journal of Supercritical Fluids 39 (2007) 362–380
Kusdiana D., S. Saka. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology 91 (2004) 289–295
Lim S., S.S. Hoong, K.T. Lee, S. Bhatia. Supercritical fluid reactive extraction of Jatropha curcas L. seeds with methanol: A novel biodiesel production method. Bioresource Technology 101 (2010) 7169–7172
Minami E., S. Saka. Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel 85 (2006) 2479–2483
Narwal SS. Allelopathy in crop production. Scientific Publishers: Jodhpur; 1994 [p. 135–6].
Olivares-Carrillo P., J. Quesada-Medina. Synthesis of biodiesel from soybean oil using supercritical methanol in a one-step catalyst-free process in batch reactor. Journal of Supercritical Fluids 58 (2011) 378–384
Ramadan M.F., R. Zayed , H. El-Shamy. Screening of bioactive lipids and radical scavenging potential of some solanaceae plants. Food Chemistry 103 (2007) 885–890.
Saka S., D. Kusdiana. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80 (2001) 225-231
Shin H.Y., J.H. Ryu, S.Y. Park, S.Y. Bae. Thermal stability of fatty acids in subcritical water. Journal of Analytical and Applied Pyrolysis 98 (2012) 250–253.
Tsigie Y. A., L.H. Huynh , P.L. Tran Nguyen , Y.H. Ju. Catalyst-free biodiesel preparation from wet Yarrowia lipolytica Po1g biomass under subcritical condition. Fuel Processing Technology 115 (2013) 50–56
U.S. Department of Energy, 2012
del Valle J.M., T. Rogalinski, C. Zetzl, G. Brunner. Extraction of boldo (Peumus boldus M.) leaves with supercritical CO2 and hot pressurized water. Food Research International 38 (2005) 203–213
Wang R., W.-W. Zhou, M. A. Hanna , Y.-P. Zhang , P. S. Bhadury , Y. Wang, B.-A. Song, S. Yang. Biodiesel preparation, optimization, and fuel properties from non-edible feedstock, Datura stramonium L. Fuel 91 (2012) 182–186
Yustianingsih L, S. Zullaikah S, Y.H. Ju, Ultrasound assisted in situ production of biodiesel from rice bran. Journal of the Energy Institute (2007) 133-137
Zhang J., L. Jiang. Acid-catalyzed esterification of Zanthoxylum bungeanum seed oil with high free fatty acids for biodiesel production. Bioresource Technology 99 (2008) 8995-8998

QR CODE