簡易檢索 / 詳目顯示

研究生: 黃品瑄
Pin-Hsuan Huang
論文名稱: 聚多巴胺/明膠修飾電化學篩網專一性抓取食道癌循環腫瘤細胞於臨床確效分析
Polydopamine/gelatin modified electrochemical mesh specifically capture circulating tumor cells of esophageal cancer for clinical validation analysis
指導教授: 陳建光
Jem-Kun Chen
口試委員: 司徒惠康
Huey-Kang Sytwu
蕭育生
Yu-Sheng Hsiao
黃才旺
Tsai-Wang Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 174
中文關鍵詞: 聚多巴胺明膠循環腫瘤細胞電化學偵測細胞培養及釋放臨床數據分析
外文關鍵詞: Polydopamine, Gelatin, Circulating tumor cells, Electrochemical detection, Cell culture and release, Clinic
相關次數: 點閱:457下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為利後續電化學檢測,本實驗所使用的基材為孔徑大小25µm的可導電不鏽鋼網。接枝流程如下,首先將不鏽鋼網與多巴胺(Dopamine)單體放置在鹼性的緩衝溶液中,在不鏽鋼網上形成奈米級多巴胺顆粒,隨後利用EDC/NHS共價固定法將明膠(Gelatin)與多巴胺結合,接枝上不鏽鋼網。接著,同樣利用EDC/NHS共價固定法修飾Protein G,再透過Protein G與抗體Anti-EpCAM的專一性強親和力固定抗體於基材表面。最後,為防止非特異性沾黏,將基材泡入牛血清蛋白(Bovine Serum Albumin,BSA),在基材表面形成抗沾黏層,完成基材的製作。完成基材後,結合自製流體裝置進行循環腫瘤細胞以及病人檢體中目標細胞的抓取,接著利用電化學系統作定量分析,此實驗有進行至後端細胞培養以及利用胰蛋白酶(Trypsin)進行細胞無損釋放。
實驗結果以下歸納,利用各儀器定性確認高分子完整包覆及接枝上基材,並在確認最佳流速為1hr/3mL後,抓取率高達7成以上近8成,接著利用電化學阻抗頻譜偵測10、25顆循環腫瘤細胞時,阻抗變化呈現高度正相關,完成檢量線以利後續臨床分析,也透過DLD-1及Hela cells確認抗體之專一性。此外我們將細胞培養於基材上,細胞活性在第三天即可達338%,優於傳統培養盤許多,細胞培養至7天,利用胰蛋白酶裂解明膠,使細胞達到約90%的高釋放效果,也利用細胞死活染劑染色確認釋放之細胞存活率高達95%以上,顯示此試片未來有極大潛力可將病患血液中循環腫瘤細胞抓取後培養。
臨床分析上,本試片成功捕獲且利用螢光染色以及電化學阻抗法綜合分析判斷病患檢體之腫瘤細胞數,並利用病患不同治療時期之檢體,追蹤病人血液中循環腫瘤細胞之顆數,預期未來可利用此體外檢測之方法輔助醫生診斷,有機會進一步取代侵入式診斷方法。
本研究成功製備出專一性抓取EpCAM表現循環腫瘤細胞之流式篩網裝置,本試片具良好生物相容性,以及良好細胞釋放效果,提供一個高效率、低成本且靈敏度佳的體外檢測系統。


To facilitate subsequent electrochemical detection, the substrate used in this experiment is a conductive stainless steel mesh with a pore size of 25 µm. In the process, the stainless steel mesh and polydopamine are placed in a Tris buffer at first to form nano-scale dopamine particles on the stainless steel mesh, and then we used EDC/NHS to graft gelatin on to the surface of the stainless steel mesh. Same as well, Protein G was modified on the surface through EDC/NHS. We also modified specific antibody Anti-EpCAM on the surface through strong affinity between Protein G and Anti-EpCAM. Finally, we use bovine serum albumin ( Bovine Serum Albumin, BSA) to form am anti-fouling layer on the surface to complete the preparation of the substrate. After completing the substrate, we combine the self-made fluid device to capture the circulating tumor cells and the target cells in substrate, using electrochemical system for quantitative analysis. We applied it to do the cell culture and trypsin to release without damage the cells.
Experimental results are summarized as follows, we use instruments to
make sure polymer completely coating and graft on specimen. After decide the best flow rate 1hr/3mL, we use electrochemical system to do the quantitative analysis to 10 and 25 circulating tumor cells, a high positive correlation was found in impedance changes, and we use it to complete the calibration line and facilitate subsequent clinical analysis. The specificity of the antibody was also confirmed through
DLD-1 and Hela cells. In addition, we culture the cells on the substrate, and the cell activity can reach 338% on the third day, which is much better than the traditional culture plate. When the cells are cultured to 7 days, we use trypsin to lyse gelatin, the release rate has achieved 90%, we also use dead and live cell stain to make sure it’s good release effect of the cells, which showing that this substrate has great potential in the future to capture and culture circulating tumor cells in the patient’s blood.
In the clinical results, we successfully captured and used fluorescent and electrochemical method to comprehensively analyze and determine the number of circulating tumor cells in the patient sample, and we use specimen from patients during different treatment periods to track the number of circulating tumor cells in the patient’s blood, expected that this in vitro method can be used to assist doctors in diagnosis in the future, which has the opportunity to replace invasive diagnostic methods.
In this study, a fluid device was used to specifically capture cells with EpCAM performance, and it has good biological activity and cell release effevt. It can provide a high efficiency, low cost and highly sensitive in vitro detection system.

目錄 1. 緒論 1 1.1. 研究目的與動機 1 1.2. 研究背景 7 2. 文獻回顧與實驗理論 9 2.1. 循環腫瘤細胞 9 2.1.1. 循環腫瘤細胞介紹 9 2.1.2. 循環腫瘤細胞生物特性標記 11 2.1.3. 食道癌循環腫瘤細胞與病患情況之相關性 12 2.1.4. 循環腫瘤細胞抓取 16 2.1.5. 循環腫瘤細胞培養 21 2.2. 電化學偵測 24 2.2.1. 電化學感測器 24 2.2.2. 生物感測器於電化學之應用 25 2.3. 聚多巴胺 29 2.4. 明膠 32 2.5. 凝膠化現象 36 2.6. 生物分子與材料介面固定法 38 2.6.1. 生物分子固定法 38 2.6.2. 共價鍵固定法 (EDC / NHS reaction) 39 2.6.3. 生物親合法 41 2.6.4. 牛血清白蛋白 42 3. 儀器原理 44 3.1. 高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope) 44 3.2. 接觸角量測儀 (Contact Angle Meter) 46 3.3. 可見光紫外光分光光譜儀 (Ultraviolet-visible spectroscopy,UV-vis) 48 3.4. 恆電位分析儀 (Potential Stat) 51 3.4.1. 循環伏安分析法 52 3.4.2. 電化學阻抗頻譜 54 3.5. 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectrometer) 56 3.6. X射線光電子能譜儀 (X-Ray Photoelectron Spectroscope) ………………………………………………………………..61 3.7. 雷射共軛焦顯微鏡 (Spectral Confocal and Multiphoton System) 63 3.8. 螢光顯微鏡 65 3.9. 表面電位分析儀 (Zeta-potential) 67 3.10. 全波長多功能微盤分析儀 69 4. 實驗流程與方法 72 4.1. 實驗流程圖 72 4.2. 實驗藥品 73 4.3. 實驗儀器 76 4.4. 實驗步驟 79 4.4.1. 不鏽鋼網基材之選擇 79 4.4.2. 不銹鋼網試片製備 79 4.4.3. 多巴胺聚合於不銹鋼網基材表面 79 4.4.4. 明膠之接枝 80 4.4.5. 修飾專一性抗體於電極表面 81 4.4.6. 細胞及生物檢體處理與染色 81 4.4.6.1. 抗沾黏實驗取出之血液中的白血球處理 81 4.4.6.2. 細胞株處理- HCT-116 (台北醫學大學李愛薇老師提供) 83 4.4.6.3. 細胞株處理- DLD-1 (台北醫學大學李愛薇老師提供) 87 4.4.6.4. 細胞株處理- Hela cell (台北醫學大學李愛薇老師提供) 87 4.4.7. 利用流體裝置抓取循環腫瘤細胞 87 4.4.8. 紫外光-可見光標準曲線分析血液相容性 88 4.4.9. 電化學分析儀進行細胞定量檢測 88 4.4.10. 細胞培養 89 4.4.10.1. 細胞培養於基材 89 4.4.10.2. 胰蛋白酶釋放細胞 90 4.4.10.3. LIVE/DEAD Cell Imaging Kit染劑判讀細胞活性 90 4.4.10.4. Cell Counting Kit (CCK-8) 染劑判讀細胞活性 91 4.4.11. 顯微鏡試片製作 91 4.4.11.1. 掃描式電子顯微鏡試片製作 91 4.4.11.2. 雷射共軛焦顯微鏡試片製作 92 4.4.12. 紫外光-可見光標準曲線分析專一性抗體接枝量 93 5. 實驗結果與討論 95 5.1. 聚多巴胺與明膠包覆不銹鋼網之分析 95 5.1.1. 聚多巴胺、分支型聚乙烯亞胺與海藻酸包覆不銹鋼網之定性分析 96 5.1.1.1. 聚多巴胺、分支型聚乙烯亞胺之紫外光/可見光光譜圖…………………………………………………………..96 5.1.1.1.1. 聚多巴胺之紫外光/可見光光譜圖 96 5.1.1.2. 聚多巴胺與明膠包覆不銹鋼網-接觸角 98 5.1.1.2.1. 聚多巴胺包覆不鏽鋼網之接觸角 99 5.1.1.2.2. 聚多巴胺與明膠包覆不銹鋼網之接觸角 100 5.1.1.3. 聚多巴胺、明膠之FTIR光譜圖 101 5.1.1.4. 聚多巴胺、分支型聚乙烯亞胺與海藻酸包覆不銹鋼網-XPS能譜圖 103 5.1.2. 聚多巴胺包覆不銹鋼網之表面形貌SEM 107 5.2. 接枝明膠、Protein G與Anti-EpCAM專一性抗體於不銹鋼網表面 110 5.2.1. 接枝明膠於不鏽鋼表面之定量分析 111 5.2.2. 接枝Protein G於不銹鋼網表面之定量分析 115 5.2.3. 接枝Anti-EpCAM專一性抗體於不銹鋼網表面之定量分析………………………………………………………………..119 5.3. Anti-EpCAM專一性抗體於不銹鋼網表面之專一性抓取分析 ………………………………………………………………..121 5.3.1. 牛血清白蛋白 (Bovine Serum Albumin,BSA) 用於抗非目標細胞黏附之效果 122 5.3.2. 自製流體裝置之參數對於HCT-116抓取效率之影響 123 5.3.2.1. 各流速之細胞抓取率 123 5.3.2.2. 流速1 hr / 3 mL、1.5 hr / 3 mL之細胞抓取率 125 5.3.3. 選擇性 127 5.4. 電化學分析技術偵測微量HCT-116 130 5.4.1. 電化學方法之穩定性 130 5.4.2. 電化學方法之準確性 133 5.5. 細胞培養 138 5.5.1. 螢光顯微鏡與共軛焦顯微鏡以及高解析度場發射掃描式電子顯微鏡(SEM)觀察細胞生長 138 5.5.2. Cell Counting Kit-8 (CCK-8)判斷細胞生長 142 5.5.3. 胰蛋白酶 (Trypsin) 用於細胞釋放之效果 144 5.5.4. Live/Dead Cell Imaging Kit判讀釋放之細胞存亡 145 5.6. 臨床檢體測試 147 5.6.1. 血液相容性測試 147 5.6.2. 臨床檢體測試 149 5.6.2.1. 臨床檢體實驗流程與判斷標準 149 5.6.2.2. 臨床檢體之分析結果 151 6. 結論 162 7. 參考文獻 164

1] Rice TW, Ishwaran H, Ferguson MK, Blackstone EH, Goldstraw P, "Cancer of the Esophagus and Esophagogastric Junction: An Eighth Edition Staging Primer," J Thorac Oncol, vol. 12, no. 1, pp. 36–42, 2017.
[2] Rebecca L. Siegel, Kimberly D. Miller, and Ahmedin Jemal, DVM, "Cancer Statistics, 2019," CA Cancer J Clin, vol.69, pp. 7-34, 2019.
[3] Ashworth, T.R., "A case of cancer in which cells similar to those in the tumours were seen in the blood after death," Aust Med J., vol. 14, p. 146, 1869.
[4] H. J. Yoon, M. Kozminsky, and S. Nagrath, "Emerging role of nanomaterials in circulating tumor cell isolation and analysis," ACS nano, vol. 8, no. 3, pp. 1995-2017, 2014.
[5] B. Weigelt, J. L. Peterse, and L. J. Van't Veer, "Breast cancer metastasis: markers and models," Nature reviews cancer, vol. 5, no. 8, p. 591, 2005.
[6] G. P. Gupta and J. Massagué, "Cancer metastasis: building a framework," Cell, vol. 127, no. 4, pp. 679-695, 2006.
[7] A. F. Chambers, A. C. Groom, and I. C. MacDonald, "Metastasis: dissemination and growth of cancer cells in metastatic sites," Nature Reviews Cancer, vol. 2, no. 8, p. 563, 2002.
[8] I. J. Fidler, "The pathogenesis of cancer metastasis: the'seed and soil'hypothesis revisited," Nature Reviews Cancer, vol. 3, no. 6, p. 453, 2003.
[9] J. P. Thiery, "Epithelial–mesenchymal transitions in tumour progression," Nature Reviews Cancer, vol. 2, no. 6, p. 442, 2002.
[10] H. Yamaguchi, J. Wyckoff, and J. Condeelis, "Cell migration in tumors," Current opinion in cell biology, vol. 17, no. 5, pp. 559-564, 2005.
[11] J. J. Christiansen and A. K. Rajasekaran, "Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis," Cancer research, vol. 66, no. 17, pp. 8319-8326, 2006.
[12] 2017 A conduit to metastasis: circulating tumor cell biology
Douglas S.Micalizzi,Shyamala Maheswaran,and Daniel A. Haber
[13] Went PT, Lugli A, Meier S, et al., "Frequent EpCam protein expression in human carcinomas," Human pathology, vol. 35, no. 1, pp. 122-128, 2004.
[14] M. Münz, C. Kieu, B. Mack, B. Schmitt, R. Zeidler, and O. Gires, "The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation," Oncogene, vol. 23, no. 34, p. 5748, 2004.
[15] C. A. O’Brien, A. Pollett, S. Gallinger, and J. E. Dick, "A human colon cancer cell capable of initiating tumour growth in immunodeficient mice," Nature, vol. 445, no. 7123, p. 106, 2007.
[16] M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke, "Prospective identification of tumorigenic breast cancer cells," Proceedings of the National Academy of Sciences, vol. 100, no. 7, pp. 3983-3988, 2003.
[17] J. Stingl, C. J. Eaves, I. Zandieh, and J. T. Emerman, "Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue," Breast cancer research and treatment, vol. 67, no. 2, pp. 93-109, 2001.
[18] Schmelzer E, Zhang L, Bruce A, et al., "Human hepatic stem cells from fetal and postnatal donors," J Exp Med., vol. 204, no. 8, pp. 1973-1987, 2007.
[19] Trzpis M, McLaughlin PM, van Goor H, et al., "Expression of EpCAM is up‐regulated during regeneration of renal epithelia," J Pathol., vol. 216, no. 2, pp. 201-208, 2008.
[20] Went PT, Lugli A, Meier S, et al., "Frequent EpCam Protein Expression in Human Carcinomas,"Human Pathology, vol. 35, no.1, pp. 122-128, 2004.
[21] Hoeppner J, Kulemann B, "Circulating Tumor Cells in Esophageal Cancer," Oncol Res Treat, vol. 40, no.7-8, pp. 417-422, 2017.
[22] Li SP, Guan QL, Zhao D, et al. "Detection of Circulating Tumor Cells by Fluorescent Immunohistochemistry in Patients with Esophageal Squamous Cell Carcinoma: Potential Clinical Applications. " Med Sci Monit, vol. 22, pp. 1654-1662, 2016.
[23] Reeh M, Effenberger KE, Koenig AM, et al., "Circulating Tumor Cells as a Biomarker for Preoperative Prognostic Staging in Patients With Esophageal Cancer." Ann Surg, vol. 261, no. 6, pp. 1124-1130, 2017.
[24] Zhao Y, Zhao S, Chen Y, et al. "Isolation of circulating tumor cells in patients undergoing surgery for esophageal cancer and a specific confirmation method " Oncol Lett, vol. 17, no. 4, pp. 3817-3825, 2019.
[25] Yin XD, Yuan X, Xue JJ, Wang R, Zhang ZR, Tong JD, "Clinical significance of carcinoembryonic antigen-, cytokeratin 19-, or survivin-positive circulating tumor cells in the peripheral blood of esophageal squamous cell carcinoma patients treated with radiotherapy " Dis Esophagus, vol. 25, no. 8, pp. 750-756, 2012.
[26] Muhammad Umera, Ramanathan Vaidyanathanb,and Nam-Trung Nguyena,"Circulating tumor microemboli: Progress in molecular understanding and enrichment technologies",Biotechnology Advances.Vol.36,no. 4, 2018,pp1367-1389
[27] Sun W, Jia C, Huang T, Sheng W, Li G, Zhang H, et al. High-Performance Size-Based Microdevice for the Detection Of Circulating Tumor Cells from Peripheral Blood in Rectal Cancer Patients. PloS one 2013;8:e75865.
[28] Lianidou ES, Markou A. Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges. Clinical chemistry 2011;57:1242-55.
[29] Liu W, Nie L, Li F, Aguilar ZP, Xu H, Xiong Y, Fu F, Xu H. Folic acid conjugated magnetic iron oxide nanoparticles for nondestructive separation and detection of ovarian cancer cells from whole blood. Biomater Sci. 2016 Jan;4(1):159-66. doi: 10.1039/c5bm00207a. PMID: 26478922.
[30] Microfluidic devices to enrich and isolate circulating tumor cells
J. H. Myunga and S. Hong ,2015
[31] Ribeiro-Samy, S., Oliveira, M.I., Pereira-Veiga, T. et al., "Fast and efcient microfuidic cell flter for isolation of circulating tumor cells from unprocessed whole blood of colorectal cancer patients," Scientific Reports, vol 9, 2019.
[32] P. D. Rye, H. K. Høifødt, G. E. øverli, and øystein Fodstad, "Immunobead Filtration: A Novel Approach for the Isolation and Propagation of Tumor Cells," American Journal of Pathology, vol. 150, no. 1, pp. 99-106, 1997.
[33] Ribeiro-Samy, S., Oliveira, M.I., Pereira-Veiga, T. et al., "Fast and efcient microfuidic cell flter for isolation of circulating tumor cells from unprocessed whole blood of colorectal cancer patients," Scientific Reports, vol 9, 2019
[34] M.-D. Zhou et al., "Separable bilayer microfiltration device for viable label-free enrichment of circulating tumour cells," Scientific reports, vol. 4, 2014.
[35] Hyeun Joong Yoon, M. Kozminsky, and Sunitha Nagrath, "Emerging Role of Nanomaterials in Circulating Tumor Cell Isolation and Analysis," ACS Nano, vol. 8, no. 3 2014.
[36] Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells ,Millicent Lin, Jie-Fu Chen,2014
[37] Dongeun Huh, G. A. Hamilton and D. E. Ingber, " From 3D cell culture to organs-on-chips," Trends in Cell Biology, vol. 21, no. 12, pp. 745-754, 2011.
[38] Batalov I, Feinberg AW, "Differentiation of Cardiomyocytes from Human Pluripotent Stem Cells Using Monolayer Culture," Biomark Insights, vol. 10, pp. 71-76, 2015.
[39] Alison Abbott, " Biology’s new dimension," Natures, vol. 424, pp. 870-872, 2003.
[40] C.D. Roskelley and M.J. Bissell., "Dynamic reciprocity revisited: a continuous, bidirectional flow of information between cells and the extracellular matrix regulates mammary epithelial cell function," Biochem. Cell Biol, vol. 73, pp. 391-397, 1995
[41] https://www.creative-biolabs.com/adc/2d-vs-3d.htm
[42] Chen W, Weng S, Zhang F, et al., "Nanoroughened Surfaces for Efficient Capture of Circulating Tumor Cells without Using Capture Antibodies," ACS Nano, vol. 7, no. 1, pp. 566-575, 2013.
[43] Shunqiang Wang, Yuan Wan, and Yaling Liua, "Effects of Nanopillar Array Diameter and Spacing on Cancer Cell Capture and Cell Behaviors," Nanoscale, vol. 6, no. 21, pp. 12482-12489, 2014.
[44] X. Huang, Y. Liu, B. Yung, Y. Xiong, and X. Chen, "Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer," ACS Nano, vol. 11, no. 6, pp. 5238-5292, 2017.
[45] M. Labib, E. H. Sargent, and S. O. Kelley, "Electrochemical methods for the analysis of clinically relevant biomolecules," Chemical reviews, vol. 116, no. 16, pp. 9001-9090, 2016.
[46] L. Wu, E. Xiong, X. Zhang, X. Zhang, and J. Chen, "Nanomaterials as signal amplification elements in DNA-based electrochemical sensing," Nano Today, vol. 9, no. 2, pp. 197-211, 2014.

[47] A. Chen and S. Chatterjee, "Nanomaterials based electrochemical sensors for biomedical applications," Chemical Society Reviews, vol. 42, no. 12, pp. 5425-5438, 2013.
[48] An impedimetric aptasensor based on water soluble cadmium telluride (CdTe) quantum dots (QDs) for detection of ibuprofen
FaezehShahdost-fard, Journal of Electroanalytical Chemistry
Volume 763, 15 February 2016, Pages 18-24
[49] Shen H, Yang J, Chen Z et al, "A novel label-free and reusable electrochemical cytosensor for highly sensitive detection and specific collection of CTCs," Biosensors and Bioelectronics, vol. 81, pp. 495-502, 2016.
[50] Peng Y, Peng Y, Tang S et al, "PdIrBP mesoporous nanospheres combined with superconductive carbon black for the electrochemical determination and collection of circulating tumor cells," Mikrochim Acta, vol. 187, no. 4, p.216, 2020.
[51] Yanlan Liu, Kelong Ai, and Lehui Lu, "Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields," Chem. Rev, vol. 114, no. 9, pp. 5057-5115, 2014.
[52] Haeshin Lee, Shara M. Dellatore, William M. Miller, Phillip B. Messersmith, "Mussel-Inspired Surface Chemistry for Multifunctional Coatings," Science, vol. 318, no. 5849, pp. 426-430, 2007.
[53] Falk Bernsmann, Vincent Ball, Frédéric Addiego, Arnaud Ponche, Marc Michel, José Joaquin de Almeida Gracio, Valérie Toniazzo, and David Ruch, "Dopamine-Melanin Film Deposition Depends on the Used Oxidant and Buffer Solution," Langmuir, vol. 27, no. 6, pp. 2819-2825, 2011.
[56] Daniel R. Dreyer, Daniel J. Miller, Benny D. Freeman, Donald R. Paul, and Christopher W. Bielawski, "Elucidating the Structure of Poly(dopamine)," Langmuir, vol. 28, no. 15, pp. 6428-6435, 2012.
[57] Seonki Hong, Yun Suk Na, Sunghwan Choi ,In Taek Song ,Woo Youn Kim , and Haeshin Lee, "Non-Covalent Self-Assembly and Covalent Polymerization Co-Contribute to Polydopamine Formation," Adv. Funct. Mater, vol. 22, no. 22, pp. 4711-4717, 2012.
[58] Yanlan Liu, Kelong Ai, Jianhua Liu, Mo Deng, Yangyang He, and Lehui Lu, "Dopamine-Melanin Colloidal Nanospheres: An Efficient Near-Infrared Photothermal Therapeutic Agent for In Vivo Cancer Therapy," Adv. Mater., vol. 25, no. 9, pp. 1353-1359, 2013.
[59] Rifang Luo, Linlin Tang, Si Zhong, Zhilu Yang, Jin Wang, Yajun Weng, Qiufen Tu, Chongxi Jiang, and Nan Huang, "Elucidating the Structure of Poly(dopamine)," Langmuir, vol. 28, no. 15, pp. 6428-6435, 2012.
[60] Asghar A, Henrickson RL. Chemical, biochemical, functional, and nutritional characteristics of collagen in food systems. Adv Food Res. Vol.28,pp231-372,1982.
[61] D.Baziwane & Q.He,’’Gelatin: The Paramount Food Additive’’,
FOOD REVIEW INTERNATIONAL,2003
[62] Shoji Ohya , Hiromichi Sonoda, Yasuhide Nakayama, Takehisa Matsuda,The potential of poly(N-isopropylacrylamide) (PNIPAM)-grafted hyaluronan and PNIPAM-grafted gelatin in the control of post-surgical tissue adhesions,vol.26,pp655-659,2005
[63] Isotta.Chimentia,Giuseppe.Rizzitelli,’’Human cardiosphere-seeded gelatin and collagen scaffolds as cardiogenic engineered bioconstructs’’,2011
[64] DavidOlsen ,’’Recombinant collagen and gelatin for drug delivery’’
Advanced Drug Delivery Reviews Volume 55, Issue 12, 28 November 2003, Pages 1547-1567
[65] PanelJui-YangLai,Ai-ChingHsieha,‘’Agelatin-g-poly(N-isopropylacrylamide) biodegradable in situ gelling delivery system for the intracameral administration of pilocarpine’’,2003
[66] Chun-HsuYao, Preparation of networks of gelatin and genipin as degradable biomaterials, Materials Chemistry and Physics
Volume 83, Issues 2–3, 15 February 2004, Pages 204-208
[67] Changjiang Fan,‘’A mussel-inspired double-crosslinked tissue adhesive intended for internal medical use’’, Acta Biomaterialia
Volume 33, 15 March 2016, Pages 51-63
[68] Jiayin Fu, Kai Yun Quek, Yon Jin Chuah ,‘’The effects of gelatin–dopamine coating on polydimethylsiloxane substrates on pluripotency maintenance and myocardial differentiation of cultured mouse embryonic stem cells’’,2016
[69] Jiayin Fu 1, Kai Yun Quek, Yon Jin Chuah, Chee Seong Lim, Changjiang Fan, Dong-An Wang ‘’The effects of gelatin-dopamine coating on polydimethylsiloxane substrates on pluripotency maintenance and myocardial differentiation of cultured mouse embryonic stem cells’’,2016
[70] its fun.com.tw.華人百科:凝膠化現象
[71] Dohyun Kim and Amy E. Herr,’’Protein immobilization techniques for microfluidic assays’’, 2013
[72] G. T. Hermanson, Bioconjugate techniques. Academic press, 2013.
[73] Adam Hughes,’’Biosensing on the End of an Optical Fiber’’,publish June 2015
[74] Yili Zhao , Zhangyu Fan , Mingwu Shen , and Xiangyang Shi, ‘’Hyaluronic Acid-Functionalized Electrospun Polyvinyl Alcohol/Polyethyleneimine Nanofi bers for Cancer Cell Capture Applications’’,ADVANCE MATERIAL,2015
[75] S. C. Goh,a Y. Luan,b X. Wang,b H. Du,b C. Chau,a H. Schellhorn,c J. L. Brash,*a H. Chenb , and Q. Fang,’’Polydopamine-polyethylene glycol-albumin antifouling coatings on multiple substrates’’,2018
[76] Xinyi Hu, Juanhua Tian, Chen Li, Hao Su, Rongrong Qin, Yifan Wang, Xin Cao, and Peng Yang, "Amyloid-Like Protein Aggregates: A New Class of Bioinspired Materials Merging an Interfacial Anchor with Antifouling," Adv. Mater., vol. 32, no. 23, 2020.

無法下載圖示 全文公開日期 2031/08/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE