簡易檢索 / 詳目顯示

研究生: 林子見
Zi-jian Lin
論文名稱: 以水熱法合成前驅物之水系漿料製備CIGS薄膜
Fabrication of CIGS thin films from the aqueous slurry prepared with amorphous precursor synthesized by the hydrothermal method
指導教授: 蕭敬業
Ching-yeh Shiau
黃炳照
Bing-joe Hwang
口試委員: 邱秋燕
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 169
中文關鍵詞: 水系漿料硒化銅銦鎵高壓釜水熱法非晶相結構硒化黃銅礦結構非真空製程
外文關鍵詞: aqueous slurry, copper indium gallium selenite, autoclave, hydrothermal method, amorphous structure, selenization, chalcopyrite structure, non-vacuum process
相關次數: 點閱:326下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究方向是以水熱法合成非晶系前驅物後,調配成水系漿料,再利用刮刀進行漿料塗佈,經硒化還原反應後,製備硒化銅銦鎵薄膜吸收層。本研究首先成功建立以高壓釜取代小型微波反應器,來輔助水熱法製備大量之硒化銅銦鎵前驅物粉體,並透過調控制反應時間、溫度及pH值之參數,來獲得粒徑分佈均一,且可達到所需計量比之非晶相結構。並搭配大型烘箱輔助高壓釜進行加熱,可有效合成大量前驅物,以利於後續漿料配製所需之前驅物粉體。最後發現以反應溫度為160℃,並控制反應溶液於pH=5之環境下,進行24小時之合成反應,為最適化之水熱合成條件。
其次將上述粉體搭配濕式球磨進行漿料調配。並於漿料中添加化學分散劑 TamolR 1% 與調控pH = 7,使其可達至均勻分散之效果,以利於刮刀塗佈出緻密之膜層。此外,為了避免殘碳問題,給予適當熱處理進行分散劑之移除。
以自行架設之硒化還原爐,藉由控制硒源氣氛 (硒錠之蒸氣壓)、反應溫度、時間,使其達至長晶效果。研究結果發現,此非晶相之薄膜,經由20 % H2、550℃之硒化還原反應1小時後,即可獲得純相之黃銅礦結構,晶粒已有明顯成長。如於漿料中摻雜 NaF 1.0 wt %、Sb2S3 1.0 mol %之添加物,長晶效果更加明顯。
由於本實驗製程皆採用水作為溶劑,避免一般有機溶劑製程之對環境的迫害,使整體更接近綠色製程。並藉由探討以上各製程步驟與參數之影響性,積極邁向非真空CIGS薄膜製程之目標。


This thesis contains research works related to the scale-up production of amorphous compound by the hydrothermal method, the preparation of aqueous slurry and the deposition of the slurry by blade coating. After reduction and selenization in a furnace, the CIGS absorbing layer can be successfully fabricated.
First, autoclave assisted by hydrothermal method is successfully used to replace the existing small microwave reactor to prepare a large quantity of copper indium gallium selenide precursor powder. It is possible to obtain uniform particle size distribution and achieve the required stoichiometry of the amorphous compound through controlling parameters - reaction time, temperature and pH value. With a large oven as an additional heating source to the reactor, the production of the precursor can be effectively increased and this is required for the following preparation of slurry. The optimized hydrothermal conditions were 160 ℃, pH = 5, and the reaction time for 24 hours.
Secondly, the powder is subject to wet grinding. In order to have a uniform dispersion, chemical dispersants is added and the pH value of the slurry is controlled. The process is followed by blade coating of the slurry to form a dense film on the glass substrate. Next, a heat treatment is applied to remove the dispersant and to avoid residual carbon.
To fabricate a CIGS absorption layer, it requires a thermal treatment combining reduction by hydrogen and selenization, so that the amorphous compound can become a crystalline semiconductor. By controlling the selenium vapor, temperature, time, one is able to control the grain growth and the composition of the final product. The results showed that the amorphous film can transform into a pure chalcopyrite structure by a selenization treatment at 550 ℃ for 1 hour. The crystal growth can be further enhanced by adding additives NaF 1.0 % and Sb2S3 1.0 mol % in the slurry. The whole developed process adopts water as the only solvent and this avoids concerns and impacts associated with the use of organic solvents. In such a way, we demonstrate research work and efforts moving towards a greener process and this paves the way for the development of a non-vacuum thin film process of CIGS solar cells.

中文摘要 I Abstract III 目錄 V 圖目錄 IX 表目錄 XVIII 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池發展簡介 2 1.3 太陽能電池之基本原理 3 1.4 太陽能電池材料與種類 7 1.4.1. 薄膜形太陽能電池 10 1.5 研究動機與目的 16 第二章 文獻回顧與理論基礎 19 2.1 硒化銅銦鎵吸收層材料結構與組成 19 2.2 硒化銅銦鎵吸收層薄膜製備技術 22 2.3 真空製程 24 2.3.1. 真空共蒸鍍硒化銅銦鎵吸收層 24 2.3.2. 濺鍍法製備硒化銅銦鎵薄膜 29 2.4 非真空製程 31 2.4.1. 電鍍法沉積硒化銅銦鎵薄膜 31 2.4.2. 塗佈法沉積硒化銅銦鎵薄膜 34 2.5 漿料製程之硒化銅銦鎵奈米粒子製備 38 2.5.1. 固態法合成硒化銅銦鎵粉體 38 2.5.2. 水熱法 40 2.5.2.1. 水熱法簡介 40 2.5.2.2. 水熱/溶熱法之原理 43 2.5.2.3. 高壓釜內容積與反應溫度所伴隨壓力之關係 44 2.5.2.4. 水熱法特點 46 2.5.2.5. 水熱/溶熱法合成硒化銅銦鎵粉體 47 2.6 CdS層之製備 53 第三章 實驗方法與儀器設備介紹 55 3.1 儀器設備 55 3.2 實驗藥品 57 3.3 實驗方法 58 3.3.1. 高壓釜水熱法合成大量硒化銅銦鎵粉體 58 3.3.2. 調配漿料與刮刀塗佈製備CIGS薄膜 60 3.4 材料特性分析與儀器原理 62 3.4.1. X光繞射(XRD)分析 62 3.4.2. 掃描式電子顯微鏡(SEM)材料表面形態分析 63 3.4.3. 能量分散光譜(EDX)元素組成分析 64 3.4.4. 感應耦合電漿原子發射光譜(ICP)元素組成分析 65 3.4.5. 穿透式電子顯微鏡(TEM)之形態分析 65 3.4.6. 界達電位(Zeta-potential)量測 66 第四章 結果與討論 68 4.1 高壓釜輔助水熱法放大合成硒化銅銦鎵粉體 68 4.1.1. 掃描式電子顯微鏡之表面形態分析 68 4.1.2. 能量分散光譜(EDX)元素組成分析 80 4.1.3. X光繞射(XRD)晶體結構分析 88 4.1.4. 穿透式電子顯微鏡(TEM)穿透形態分析 92 4.2 水系漿料之調配 95 4.2.1. 濕式球磨之研磨條件 96 4.2.2. 調控pH值對漿料分散性之影響 100 4.2.3. 球磨與分散性對塗佈成膜之影響 103 4.3 分散劑之移除 108 4.4 還原與硒化製備硒化銅銦鎵薄膜層 111 4.4.1. 硒源氣氛與反應時間之影響 114 4.4.2. 添加劑對薄膜長晶之影響 120 4.4.3. X光薄膜繞射(XRD)晶體結構分析 123 4.5 綜合討論 124 4.5.1. 硒化銅銦鎵合成性質之探討 124 4.5.2. 高壓釜水熱法合成條件之探討 124 4.5.3. 製備硒化銅銦鎵粉體之相關文獻比較 128 4.5.4. 調製水系漿料之探討 130 4.5.4.1. 添加分散劑與酸鹼環境之影響 130 4.5.5. 刮刀塗佈與硒化還原製備硒化銅銦鎵薄膜之探討 132 4.5.5.1. 研磨方式與分散性對成膜之影響 132 4.5.5.2. 硒源氣氛與添加劑對長晶之影響 133 第五章 結論 136 第六章 未來展望 139

1. 楊素華, 蔡泰成, 太陽能電池發電元件. 科學發展, 2005.
2. Green, Martin A., Emery, Keith, Hishikawa, Yoshihiro, and Warta, Wilhelm, Solar cell efficiency tables (version 33). Progress in Photovoltaics: Research and Applications, 2009. 17(1): p. 85-94.
3. Miles, R., Zoppi, G., and Forbes, I., Inorganic photovoltaic cells. Materials Today, 2007. 10(11): p. 20-27.
4. X. Wu, R.G. Dhere, D.S. Albin, T.A. Gessert, C. DeHart, J.C. Keane, A. Duda, T.J. Coutts,, S. Asher, D.H. Levi, H.R. Moutinho, Y. Yan, T. Moriarty, S. Johnston, K. Emery, and, and Sheldon, P., High-Efficiency CTO ZTO CdS CdTe Polycrystalline Thin-Film Solar. 2001.
5. Hahn, Harry, Frank, Gunter, Klingler, Wilhelm, Meyer, Anne-Dorothee, and Storger, Georg, Untersuchungen uber ternare Chalkogenide. V. Uber einige ternare Chalkogenide mit Chalkopyritstruktur. Zeitschrift fur anorganische und allgemeine Chemie, 1953. 271(3-4): p. 153-170.
6. Queisser, J. L., Wernick, J. H., and Fripp, Archibald L., Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications. Journal of The Electrochemical Society, 1976. 123(5): p. 170C-171C.
7. Tell, B. and Kasper, H. M., Optical and Electrical Properties of AgGaS2 and AgGaSe2. Physical Review B, 1971. 4(12): p. 4455.
8. Tell, B., Shay, J. L., and Kasper, H. M., Room-temperature electrical properties of ten I-III-VI2 semiconductors. Journal of Applied Physics, 1972. 43(5): p. 2469-2470.
9. Chen, W., 19th IEEE Photovoltaic Specialist Conf. 1987. 1445.
10. Potter, R. R., Enhanced photocurrent ZnO/CdS/CuInSe2 solar cells. Solar Cells. 16: p. 521-527.
11. Hedstrom, J., Ohlsen, H., Bodegard, M., Kylner, A., Stolt, L., Hariskos, D., Ruckh, M., and Schock, H. W. ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance. in Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE. 1993.
12. Tarrant, D. and Ermer, J. I-III-VI2 multinary solar cells based on CuInSe2. in Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE. 1993.
13. Jackson, Philip, Hariskos, Dimitrios, Lotter, Erwin, Paetel, Stefan, Wuerz, Roland, Menner, Richard, Wischmann, Wiltraud, and Powalla, Michael, New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications, 2011: p. n/a-n/a.
14. Staebler, D. L. and Wronski, C. R., Reversible conductivity changes in discharge-produced amorphous Si. Applied Physics Letters, 1977. 31(4): p. 292-294.
15. William N. Shafarman, Lars Stolt, Cu(InGa)Se2 Solar Cells. John Wiley & Sons, 2003.
16. GODECKE T., HAALBOOM T., ERNST F., Phase equilibria of Cu-In-Se. I. Stable states and nonequilibrium states of the In2Se3-Cu2Se subsystem. Vol. 91. 2000: Hanser.
17. Robert W. Birkmire, Erten Eser, POLYCRYSTALLINE THIN FILM SOLAR CELLS Present Status and Future Potential. Annu. Rev. Mater. Sci, 1997. 27: p. 625.
18. Kaelin, M., Rudmann, D., and Tiwari, A. N., Low cost processing of CIGS thin film solar cells. Solar Energy, 2004. 77(6): p. 749-756.
19. Mattox, D. M., Handbook of Physical Vapor Deposition (PVD) Processing. 1998, William Andrew Publishing/Noyes.
20. Mickelsen RA, Chen WS, Proceeding of the 15th IEEE Photovoltaic Specialists Conference. 1981: p. 800-804.
21. Powalla, M., Voorwinden, G., Hariskos, D., Jackson, P., and Kniese, R., Highly efficient CIS solar cells and modules made by the co-evaporation process. Thin Solid Films, 2009. 517(7): p. 2111-2114.
22. M.Powalla, B.DIMMLER, R.Schaffler, G.Voorwinden, U.Stein, H.-D.Mohring, F.Kessler, D.Hariskos, 19th European Photovoltaic Solar Energy Conference, 2004: p. 163.
23. Repins, Ingrid, Contreras, Miguel A., Egaas, Brian, DeHart, Clay, Scharf, John, Perkins, Craig L., To, Bobby, and Noufi, Rommel, 19•9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81•2% fill factor. Progress in Photovoltaics: Research and Applications, 2008. 16(3): p. 235-239.
24. Nakada, Tokio and Shirakata, Sho, Impacts of pulsed-laser assisted deposition on CIGS thin films and solar cells. Solar Energy Materials and Solar Cells, 2011. 95(6): p. 1463-1470.
25. Grindle, Steven P., Smith, Charles W., and Mittleman, Steven D., Preparation and properties of CuInS2 thin films produced by exposing sputtered Cu-In films to an H[sub 2]S atmosphere. Applied Physics Letters, 1979. 35(1): p. 24-26.
26. Chu, T. L., Chu, Shirley S., Lin, S. C., and Yue, J., Large Grain Copper Indium Diselenide Films. Journal of The Electrochemical Society, 1984. 131(9): p. 2182-2185.
27. Jensen, C. L., Tarrant, D. E., Ermer, J. H., and Pollock, G. A. The role of gallium in CuInSe2 solar cells fabricated by a two-stage method. in Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE. 1993.
28. M. Marudachalam, H. Hichri, R. Klenk, R. W. Birkmire, and W. N. Shafarman, Preparation of homogeneous Cu(InGa)Se2 films by selenization of metal precursors in H2Se atmosphere. Appl. Phys. Lett, 1995. 67: p. 3978-3980.
29. Kushiya, Katsumi, Key near-term R&D issues for continuous improvement in CIS-based thin-film PV modules. Solar Energy Materials and Solar Cells, 2009. 93(6-7): p. 1037-1041.
30. Bhattacharya, R. N., Solution growth and electrodeposited CuInSe2 thin film. J. Electrochem. Soc, 1983. 130: p. 2040.
31. Kapur, Vijay K., Basol, Bulent M., and Tseng, Eric S., Low cost methods for the production of semiconductor films for CuInSe2/CdS solar cells. Solar Cells. 21(1-4): p. 65-72.
32. A.M. Fernandez, P.J. Sebastian, A.M. Hermann, R.N. Bhattacharya, R.N. Noufi, and M.A. Contreras, ELECTRODEPOSITION OF CulnSe2 THIN FILMS FOR PHOTOVOLTAIC APPLICATION. (EREC 1996): p. 396-399.
33. CuIn1-xGaxSe2-based photovoltaic cells from electrodeposited and chemical bath deposited precursors. Solar Energy Materials and Solar Cells, 1998. 55: p. 83-94.
34. R.N. Bhattacharyaa, J.F. Hiltnerb, W. Batchelora, M.A. Contrerasa, R.N. Noufi, J.R. Sitesb, 15.4% CuIn1-XGaXSe2-Based Photovoltaic Cells from Solution-Based Precursor Films. Thin Solid Films 2000. 361: p. 396-399.
35. Chaure, N. B., Samantilleke, A. P., Burton, R. P., Young, J., and Dharmadasa, I. M., Electrodeposition of p+, p, i, n and n+-type copper indium gallium diselenide for development of multilayer thin film solar cells. Thin Solid Films, 2005. 472(1-2): p. 212-216.
36. Huang, C. J., Meen, T. H., Lai, M. Y., and Chen, W. R., Formation of CuInSe2 thin films on flexible substrates by electrodeposition (ED) technique. Solar Energy Materials and Solar Cells, 2004. 82(4): p. 553-565.
37. Dharmadasa, I. M., Chaure, N. B., Tolan, G. J., and Samantilleke, A. P., Development of p+, p, i, n, and n+-Type CuInGaSe2 Layers for Applications in Graded Bandgap Multilayer Thin-Film Solar Cells. Journal of The Electrochemical Society, 2007. 154(6): p. H466-H471.
38. Arita, T., Suyama, N., Kita, Y., Kitamura, S., Hibino, T., Takada, H., Omura, K., Ueno, N., and Murozono, M. CuInSe2 films prepared by screen-printing and sintering method. in Photovoltaic Specialists Conference, 1988., Conference Record of the Twentieth IEEE. 1988.
39. Norsworthy, G., Leidholm, C. R., Halani, A., Kapur, V. K., Roe, R., Basol, B. M., and Matson, R., CIS film growth by metallic ink coating and selenization. Solar Energy Materials and Solar Cells, 2000. 60(2): p. 127-134.
40. Basol, Bulent M., Low cost techniques for the preparation of Cu(In,Ga)(Se,S)2 absorber layers. Thin Solid Films, 2000. 361-362: p. 514-519.
41. Kapur, Vijay K., Bansal, Ashish, Le, Phucan, and Asensio, Omar I., Non-vacuum processing of CuIn1-xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks. Thin Solid Films, 2003. 431-432: p. 53-57.
42. J. K. J. van Duren, C. Leidholm, A. Pudov, M. R. Robinson, Y. Roussillon, HIGH-PERFORMANCE THIN-FILM PHOTOVOLTAICS USING LOW-COST PROCESS TECHNOLOGY. Nanosolar.
43. Wei Liu, David B. Mitzi, S. Jay Chey, Andrew Kellock, CuIn(Se,S)2 Absorbers Processed using a Hydrazine-Based Solution Approach. Materials Research Society, 2009. 1123.
44. Nobuyuki Yamamoto, Satosi Ishida , Hiromichi Horinaka Solid State Growth of CuInSe2 and CuInTe2. Jpn. J. Appl. Phys. , 1989. 28: p. 1780-1783.
45. Wada, Takahiro and Kinoshita, Hiroki, Rapid exothermic synthesis of chalcopyrite-type CuInSe2. Journal of Physics and Chemistry of Solids, 2005. 66(11): p. 1987-1989.
46. Wada, Takahiro and Kinoshita, Hiroki, Preparation of CuIn(S,Se)2 by mechanochemical process. Thin Solid Films, 2005. 480-481: p. 92-94.
47. Laudise, R.A., Hydrothermal Synthesis of Crystals. C&EN, 1986.
48. Rabenau, Albrecht, The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English, 1985. 24(12): p. 1026-1040.
49. Morey, George W., Hydrothermal Synthesis. Journal of the American Ceramic Society, 1953. 36(9): p. 279-285.
50. SHIGEYUKI SOMIYA, RUSTUM ROY, Hydrothermal synthesis of fine oxide powders. Indian Academy of Sciences, 2000. 23: p. 453–460.
51. Yoshimura, M. and Byrappa, K., Hydrothermal processing of materials: past, present and future. Journal of Materials Science, 2008. 43(7): p. 2085-2103.
52. Walton, Richard I., Subcritical solvothermal synthesis of condensed inorganic materials. Chemical Society Reviews, 2002. 31(4): p. 230-238.
53. Rabenau, A., The Role of hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie : International Edition in English 1985. 24: p. 1026-1040.
54. B. Li, Y. Xie , J. Huang, Y. Qian., Synthesis by a solvothermal route and characterization of CuInSe2 nanowhiskers and nanoparticles. Adv. Mater., 1999. 17.
55. Jin, Ying, An, Changhua, Tang, Kaibin, Huang, Liying, and Shen, Guozheng, Hydrothermal synthesis and characterization of CuIn2.0Se3.5 nanocrystallites. Materials Letters, 2003. 57(26-27): p. 4267-4270.
56. Tang, Jiang, Hinds, Sean, Kelley, Shana O., and Sargent, Edward H., Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles. Chemistry of Materials, 2008. 20(22): p. 6906-6910.
57. Luo, Paifeng, Yu, Penghan, Zuo, Ruzhong, Jin, Jiao, Ding, Yuankui, Song, Junda, and Chen, Yutong, The preparation of CuInSe2 films by solvothermal route and non-vacuum spin-coating process. Physica B: Condensed Matter, 2010. 405(16): p. 3294-3298.
58. Huiyu, Chen, Seong-Man, Yu, Dong-Wook, Shin, and Ji-Beom, Yoo. Synthesis of chalcopyrite CuInSe2 nanoparticles via a facile solvothermal method. in Nanoelectronics Conference (INEC), 2010 3rd International. 2010.
59. Yassitepe, Emre, Khalifa, Zaki, Jaffari, G. Hassnain, Chou, Chuen-Shii, Zulfiqar, Sonia, Sarwar, Muhammad Ilyas, and Shah, Syed Ismat, A new route for the synthesis of CuIn0.5Ga0.5Se2 powder for solar cell applications. Powder Technology, 2010. 201(1): p. 27-31.
60. Gu, Sin-Il, Shin, Hyo-Soon, Yeo, Dong-Hun, Hong, Youn-Woo, and Nahm, Sahn, Synthesis of the single phase CIGS particle by solvothermal method for solar cell application. Current Applied Physics, 2011. 11(1): p. S99-S102.
61. Kuranouchi, Shin'ichi, Nakazawa, Tatsuo, Ashida, Atsushi, and Yamamoto, Nobuyuki, Cadmium sulfide thin films prepared by chemical bath deposition method. Solar Energy Materials and Solar Cells, 1994. 35: p. 185-191.
62. Ramanathan, Kannan, Contreras, Miguel A., Perkins, Craig L., Asher, Sally, Hasoon, Falah S., Keane, James, Young, David, Romero, Manuel, Metzger, Wyatt, Noufi, Rommel, Ward, James, and Duda, Anna, Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Progress in Photovoltaics: Research and Applications, 2003. 11(4): p. 225-230.
63. Canava, B., Gerard, I., Guillemoles, J. F., Lincot, D., and Etcheberry, A., Cadmium sulfide/indium phosphide as a model system for understanding indium related chemical reactivity at CIGS/CdS interface: XPS and ex situ luminescence investigations. Thin Solid Films, 2005. 480-481: p. 230-235.
64. 林志隆, 以微波水熱法合成新穎析化銅銦鎵 (CuIn1-xGaxSe2) 材料應用於薄膜CIGS太陽能電池之研究. 國立台灣科技大學/化學工程研究所碩士論文, 2008.
65. Lundberg, O., Lu, J., Rockett, A., Edoff, M., and Stolt, L., Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells. Journal of Physics and Chemistry of Solids, 2003. 64(9-10): p. 1499-1504.
66. J Klaer, J Bruns, R Henninger, K Siemer, R Klenk, K Ellmer and D Braunig, Efficient CuInS2 thin-film solar cells prepared by a sequential process Semicond . Sci. Technol, 1998. 13: p. 1456-1458.
67. TOGURI, J. R. RAWLINGA ND J. ivI., The thermodynamic properties of hydrogen selenide. CANADIAN JOURNAL OF CHEMISTRY., 1965. 44.
68. Luo, Xiao-Jun, Zhang, Bao-Lin, Li, Wen-Lan, and Zhuang, Han-Rui, Preparation of aluminum nitride green sheets by aqueous tape casting. Ceramics International, 2004. 30(8): p. 2099-2103.
69. Yuan, Min, Mitzi, David B., Gunawan, Oki, Kellock, Andrew J., Chey, S. Jay, and Deline, Vaughn R., Antimony assisted low-temperature processing of CuIn1-xGaxSe2-ySy solar cells. Thin Solid Films, 2010. 519(2): p. 852-856.
70. Yuan, Min, Mitzi, David B., Liu, Wei, Kellock, Andrew J., Chey, S. Jay, and Deline, Vaughn R., Optimization of CIGS-Based PV Device through Antimony Doping. Chemistry of Materials, 2009. 22(2): p. 285-287.
71. Chun, Y. G., Kim, K. H., and Yoon, K. H., Synthesis of CuInGaSe2 nanoparticles by solvothermal route. Thin Solid Films, 2005. 480-481: p. 46-49.
72. Olejnicek, J., Kamler, C. A., Mirasano, A., Martinez-Skinner, A. L., Ingersoll, M. A., Exstrom, C. L., Darveau, S. A., Huguenin-Love, J. L., Diaz, M., Ianno, N. J., and Soukup, R. J., A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction. Solar Energy Materials and Solar Cells, 2010. 94(1): p. 8-11.
73. Ahn, SeJin, Kim, KiHyun, Chun, YoungGab, and Yoon, KyungHoon, Nucleation and growth of Cu(In,Ga)Se2 nanoparticles in low temperature colloidal process. Thin Solid Films, 2007. 515(7-8): p. 4036-4040.
74. 康庭瑋, 以亞硒酸銅銦鎵前驅物調製水系漿料製備薄膜CIGS 太陽能電池之研究. 國立台灣科技大學/化學工程研究所碩士論文, 2009.

無法下載圖示 全文公開日期 2016/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE