簡易檢索 / 詳目顯示

研究生: 謝和峯
Ho-Feng Hsieh
論文名稱: 三硒化二銦奈米結構之光電導特性研究
Photoconduction Properties in In2Se3 Nanostructures
指導教授: 趙良君
Liang-Chiun Chao 
李奎毅
Kuei-Yi Lee
陳瑞山
Ruei-San Chen
口試委員: 趙良君
Liang-Chiun Chao
李奎毅
Kuei-Yi Lee
陳瑞山
Ruei-San Chen
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 83
中文關鍵詞: 三硒化二銦光導奈米結構
外文關鍵詞: In2Se3, Photoconduction, Nanostructures
相關次數: 點閱:156下載:33
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討利用化學氣相傳導法(chemical vapor transport)成長之三硒化二銦 (In2Se3) 層狀半導體奈米結構之光電導及電傳輸特性。利用機械剝離法將三硒化二銦單晶分離成二維奈米結構,並利用聚焦式離子束(focus ion beam)製作二維奈米結構之白金電極。對三硒化二銦奈米薄片進行光電導量測,發現其具有明顯的光電流反應,且隨著光強度增加,光電流也表現出非線性的增加。同時在相同的綠光雷射波長條件下,藉由比較不同層狀半導體,發現三硒化二銦奈米結構有著最佳的光反應率(responsivity)及光電導增益(gain)。進而去記算出歸一化增益(normalized gain),發現三硒化二銦歸一化增益至少大於其它層狀半導體奈米結構兩個數量級。此外在不同波長照射下,發現三硒化二銦奈米薄片對紅外光具有較佳的光電流反應。藉由環境變化之光電導量測,顯示三硒化二銦遵循氧敏化光電導機制(oxygen-sensitized)。其造成三硒化二銦奈米薄片具有較佳的光電導特性之物理機制也將在本論文中探討。


    Photoconduction and electronic transport properties in the direct-bandgap layer semiconductor of hexagonal diindium triselenide (In2Se3) grown by chemical vapor transport (CVT) have been investigated. The In2Se3 layer nanostructure devices were fabricated using focused-ion beam (FIB) to deposit platinum (Pt) as the contact metal. We observed that the photocurrent of In2Se3 nanosheets increases nonlinearly with an increase at light intensity. Notably, under the same excitation wavelength condition, the In2Se3 nanosheets show the optimal responsivity compared to most of the layer semiconductor nanostructures. The normalized gain values, which defines the inherent photocurrent collection efficiency, of the In2Se3 nanosheets are over two orders of magnitude higher than those of other layer materials. By using different excitation wavelength, the In2Se3 nanosheets show a higher photoresponse to the infrared light illumination. The environment-dependent photoconductivity measurement indicates that the In2Se3 nanosheets follow the oxygen-sensitized photoconduction mechanism. The physical origins resulting in the superior photoconductivity and detector performance in the In2Se3 nanosheets were also discussed.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 第二章 實驗方法 3 2.1三硒化二銦單晶製備方法 3 2.2 三硒化二銦之形貌與結構特性檢測 4 2.2.1拉曼散射儀(Raman Scattering Spectroscopy) 4 2.2.2掃描式電子顯微術 (SCANNING ELECTRON MICROSCOPY, SEM) 7 2.2.3 X光繞射儀 (X-ray Diffractometry, XRD) 10 2.2.4 雙束型聚焦離子束系統 (Dual-Beam Focused Ion Beam, FIB) 13 2.2.5原子力顯微鏡(Atomic Force Microscopy, AFM) 17 2.3 三硒化二銦奈米結構元件製作 20 2.3.1元件基板製作 20 2.3.2機械式剝離法將層狀材料分散 21 2.3.3層狀樣品電極製作 23 2.4 奈米薄片之暗電導特性量測 25 2.4.1 電流對電壓曲線量測(Current-Voltage Measurement) 26 2.4.2 奈米薄片場效應電晶體(Field Effect Transistor)特性量測 26 2.5 奈米薄片之光電導特性量測 26 2.5.1 功率相依之光電導量測(POWER-DEPENDENT PHOTOCURRENT MEASUREMENT) 27 2.5.2 環境變化之光電導量測(AMBIENCE-DEPENDENT PHOTOCURRENT MEASUREMENT) 27 2.5.3 光電流能譜量測(PHOTOCURRENT SPECTRUM MEASUREMENT) 28 第三章結果與討論 32 3.1三硒化二銦層狀單晶與奈米材料之表面形貌與結構分析 32 3.1.1表面形貌 32 3.1.2晶體結構 35 3.2 三硒化二銦元件之SEM形貌分析 37 3.2.1三硒化二銦奈米結構元件製作 37 3.2.3三硒化二銦塊材元件製作 39 3.3利用原子力顯微鏡 (AFM) 定義層狀奈米元件厚度 41 3.4 三硒化二銦奈米結構元件之暗電導分析 43 3.4.1 三硒化二銦奈米結構之電壓對電流量測 43 3.4.2 金氧半場效應電晶體量測 45 3.5三硒化二銦奈米結構元件之光電導分析 48 3.5.1 三硒化二銦奈米結構之功率相依光電導量測 48 3.5.2 三硒化二銦奈米結構不同雷射波長下之光電導反應 50 3.5.3光電導效率量測 52 3.5.4 氧氣敏化光電導機制 60 3.5.5光電流能譜量測 (PHOTOCURRENT SPECTRA MEASUREMENT) 63 第四章 結論 65 參考文獻 66

    [1]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. Y. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature Letters., vol. 438, pp. 197-200, 2005.
    [2]K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS., vol. 102, pp. 10451-10453, 2005.
    [3]D. Hariskos, S. Spiering, and M. Powalla, “Buffer layers in Cu(In,Ga)Se2 solar cells and modules,” Thin Solid Films, vol. 480-481, pp. 99-109, 2005.
    [4]D. K. Nagesha, X. Liang, A. A. Mamedov, G. Gainer, M. A. Eastman, M.Giersig, J.-J. Song, T. Ni, and N. A. Kotov, “In2Se3 nanocolloids with excitontic emission: In2Se3 vs CdS comparative study of optical and structural characteristics,” J. Phys. Chem. B., vol. 105, pp. 7490-7498, 2001.
    [5]R. B. Jacobs-Gedrim, M. Shanmugam, N. Jain, C. A. Durcan, M. T. Murphy, T. M. Murray, R. J. Matyi, R. L. Moore, and B. Yu, “Extraordinary photoresponsein two-dimensional In2Se3 nanosheets,” ACS. Nano., vol. 8, pp. 514-521, 2014.
    [6]Q. L. Li, C. H. Liu, Y. T. Nie, W. H. Chen, X. Gao, X. H. Sun, and S. Wang, “Phototransistor based on single In2Se3 nanosheets,” Nanoscale., vol. 6, 14538-14542, 2014.
    [7]J. O. Island, S. L. Blanter, M. Buscema, H. S. J. van der Zant, and A. Castellanos-Gomez, “Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors,” Nano Lett., vol. 15, pp.7853-7858, 2015.
    [8]W. Feng, W. Zheng, F. Gao, X. S. Chen, G. Liu, T. Hasan, W. W. Cao, and P. A. Hu, “Sensitive electronic-skin strain sensor array based on the patterned two-dimensional α‑In2Se3,” Chem. Mater., vol. 28, pp. 4278-4283, 2016.
    [9]P. E. J. Flewitt and R. K. Wild, “Physical methods for materials characterization,” IOP Publishing, Bristol, 1994.
    [10]B. D. Cullity and S. R. Stock, “Elements of x-ray diffraction,” Prentice Hall, New Jersey, 2001.
    [11]A. Beiser, “Concepts of modern physics,” McGraw-Hill Education Pvt Limited, 2003.
    [12]A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. Adv. Packag., vol. 26, pp. 141-149, 2003.
    [13]A. A. Tseng, “Recent developments in micromilling using focused ion beam technology,” J. Micromechanice Microengineering, vol. 14, pp. 15-34, 2004.
    [14]A. A. Tseng, “Recent developments in nanofabrication using focused ion beams,” Small, vol. 1, pp. 924-939, 2005.
    [15]F. Braet, R. De Zanger, and E. Wisse, “Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells,” J. Microsc., vol. 186, pp. 84-87, 1997.
    [16]Y. M. Chang, H. Kim, J. H. Lee, and Y. W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett., vol. 97, pp. 211102-1-211102-3, 2010.
    [17]C. Y. Nam, D. Tham, and J. E. Fischer, “Disorder effects in focused-ionbeam-deposited Pt contacts on GaN nanowires,” Nano Lett., vol. 5, pp. 2029-2033, 2005.
    [18]G. Wu, X. Wang, P. Wang, H. Huang, Y. Chen, S. Sun, H. Shen, T. Lin, J. Wang, and S. Zhang, “Visible to short wavelength infrared In2Se3-nanoflake photodetector gated by a ferroelectric polymer,” Nanotechnology, vol. 27, pp. 364002-1-364002-7, 2016.
    [19]R. Lewandowskaa, R. Bacewicza, J. Filipowicza, and W. Paszkowiczb, “Raman scattering in In2Se3 crystals,” Materials Research Bulletin, vol. 36, pp. 2577-2583, 2001.
    [20]K. KambasA, C. Julien, M. Jouanne, A. Likforman, and M. Guittard, “Raman spectra of α- and γ-In2Se3,” Phys. stat. sol., vol. 124, pp. K105-K108, 1984.
    [21]W. Feng, W. Zheng, W. Cao, and P. A. Hu, “Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface,” Adv. Mater., vol. 26, pp. 6587-6593, 2014.
    [22]B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol., vol. 6, pp. 147-150, 2011.
    [23]P. Bhattacharya, “Semiconductor optoelectronic devices,” Prentice Hall New Jersey, vol. 8, pp. 346-351, 1997.
    [24]M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J.Appl. Phys., vol. 79, pp. 7433-7473, 1996.
    [25]R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, “Ultahigh photocurrent gain in m-axial GaN nanowires,” Appl. Phys. Lett., vol. 91, pp. 223106-1-223106-3, 2007.
    [26]R. S. Chen, W. C. Wang, C. H. Chan, H. P. Hsu, L. C. Tien, and Y. J. Chen, “Photoconductivities in monocrystalline layered V2O5 nanowires grown by physical vapor deposition,” Nanoscale Res. Lett., vol. 8, pp. 443, 2013.
    [27]C. Fabrega, F. Hernandez-Ramirez, J. D. Prades, R. Jimenez-Diaz, T. Andreu, and J. R. Morante, “On the photoconduction properties of low 93 resistivity TiO2 nanotubes,” Nanotechnology, vol. 21, pp. 445703, 2010.
    [28]Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from puremonolayer graphene photodetector,” Nat. Commun., vol. 4, pp. 1811, 2013.
    [29]P. A. Hu, Z. Wen, L. Wang, P. Tan, and K. Xiao, “Synthesis of few-layer GaSe nanosheets for high performance photodetectors,” ACS Nano, vol. 6, pp. 5988-5994, 2012.
    [30]P. A. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Lett., vol. 13, pp. 1649-1654, 2013.
    [31]W. C. Shen, R. S. Chen, and Y. S. Huang, “Photoconductivities in MoS2 nanoflake photoconductors,” Nanoscale Res. Lett., vol. 11, pp. 11671-1-11671-7, 2016.
    [32]D. H. Kang, M. S. Kim, J. Shim, J. Jeon, H. Y. Park, W. S. Jung, H. Y. Yu, C. H. Pang, S. Lee, and J. H. Park, “High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping,” Adv. Funct. Mater., vol. 25, pp. 4219-4227, 2015
    [33]W. C. Shen,“ Thickness-dependent electric properties in MoS2 and WS2 layer semiconductor nanostructures,” Master thesis, NTUST., ECE Dept., Taipei, 2015.
    [34]C. M. Chen,“Electronic transport properties in GaS two-dimensional nanostructures,” Master thesis, MCUT., ECE Dept., Taipei, 2015.
    [35]Y. H. Huang, R. S. Chen, J. R. Zhang, and Y. S. Huang, “Electronic transport in NbSe2 two-dimensional nanostructures: semiconducting characteristics and photoconductivity,” Nanoscale, vol. 7, pp. 18964-18970, 2015.
    [36]P. S. Kolhe1, S. R. Suryawanshi, R. T. Shisode, and M. A. More, “Synthesis and field emission behaviour of well faceted In2Se3 micro-crystals,” AIP Conf. Proc., vol. 1665, pp. 050176-1–050176, 2015.
    [37]H.W. Yang, H. F. Hsieh, R. S. Chen, C. H. Ho, K. Y. Lee, and L. C. Chao, “Ultraefficient ultraviolet and visible light sensing and ohmic contacts in high-mobility InSe nanoflake photodetectors fabricated by the focused ion beam technique,” ACS Appl. Mater., vol. 10, pp. 5740-5749, 2018.

    QR CODE