簡易檢索 / 詳目顯示

研究生: 黃英
Hoang - Anh
論文名稱: IEEE 802.16 標準在網狀網路下採用橢圓曲線加密機制可能性之研究
Study on Elliptic Curve Cryptography schemes for IEEE 802.16 Standard in Mesh Networks
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 陳俊良
Jiann-Liang Chen
曾德峰
Der-Feng Tseng
陳漢宗
Hann-Trong Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 54
中文關鍵詞: 安全性WiMAX網狀網路RSA橢圓曲線密碼學數位簽章加密方法金鑰協商協議公開金鑰加密系統
外文關鍵詞: Security, WiMAX, Mesh Network, RSA, Elliptic Curve Cryptography (ECC), Digital Signature, Encryption, Key Agreement, Public-Key Cryptography.
相關次數: 點閱:350下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • WiMAX為非常具有發展前途的下一代寬頻無線網路標準。在安全性方面,到目前為止,大部份的無線設備廠商及其使用者,都錯誤地相信標準中主要的安全性弱點在於它使用56位元的資料加密標準。事實上,金鑰的長度並不是標準安全性不足的主要原因。
    在本論文中,我們對加密系統進行研究。藉由引入橢圓曲線密碼學(Elliptic Curve Cryptography, ECC)機制,我們能夠在WiMAX網狀網路環境中進行安全的通訊。在本論文中我們使用了一些重要的方法,如金鑰協商協議(Key agreement)方法提供共享的密鑰;數位簽章機制用來對設備及其所傳送的資料做認証。加密機制的目的是為了提供隱私。然而,在設計任何安全方案前,我們必須分析外部威脅為何。因此,我們也對WiMAX的安全威脅提出分析。
    除此之外,我們提出一種在IEEE 802.16網狀模式下基於密碼系統的安全架構來加強安全性。事實上,RSA是目前最廣泛被運用的公開金鑰演算法。但,ECC在使用較小金鑰長度的情況下,能夠提供相同強度的安全性。ECC對於無線設備來設特別有吸引力,因為它能夠節省記憶體、頻寬及計算量。
    最後做一總結,安全領域是一種數學與工程學科的結合,我們試著在本論文中達到這一點。


    WiMAX is a promising technology for next generation Broadband Wireless Access. In term of security, until recently, most of the wireless industry and its users mistakenly believed that the standard’s major security weakness was its use of 56-bit Data Encryption Standard. In fact, the key size is one of the standard’s most insignificant security weaknesses.
    In this thesis, we studied on cryptosystems. By employing Elliptic Curve Cryptography schemes, we can achieve the secure communication in case of WiMAX Mesh networks. There are significant schemes was used, such as: Key agreement schemes provide a shared secret key; Digital signature scheme is used for authenticating a device or a message send by a device; Encryption schemes are method for providing privacy. However, we have to analyses the threats before we can propose or design any security solutions. Therefore, the WiMAX Security threats analyses method also was used.
    In addition, we propose the security architecture for IEEE 802.16 mesh mode to improve the security based on cryptosystems. In fact, RSA is by far the most widely used public-key algorithm today. However, ECC offers equivalent security at much smaller key sizes. ECC is especially attractive for constrained wireless devices because the smaller keys result in memory, bandwidth and computational savings.
    In summary, security area is an excellent combination between mathematic and engineering, which we have done in the thesis.

    Abstract ii Acknowledgement iii Table of Contents iv List of Figures viii List of Tables ix Chapter 1. Introduction 1 1.1 WiMAX 1 1.2 Related Works 2 1.3 Problem 2 1.4 Research Questions 3 1.5 Goal 3 1.6 Method 4 Chapter 2. The IEEE 802.16 Standard 5 2.1 Core Technology 5 2.2 Benefits 7 2.3 Applications 9 2.4 Various of the IEEE 802.16 Standard 10 2.4.1 IEEE 802.16-2001 11 2.4.2 IEEE 802.16c-2002 11 2.4.3 IEEE 802.16a-2003 12 2.4.4 IEEE 802.16-2004 12 2.4.5 IEEE 802.16f-2005 12 2.4.6 IEEE 802.16e-2005 12 2.5 Operation Mode 13 2.5.1 PMP mode 13 2.5.2 Mesh mode 14 Chapter 3. Research Methodology 16 3.1 WiMAX Security Threat Analyses 16 3.2 Cryptographic Methodology 18 3.2.1 Cryptographic Primitives 18 3.2.2 Rivest-Shamir-Adleman (RSA) 19 3.3.3 Elliptic Curve Cryptography (ECC) 19 3.3 Implementation Consideration 24 3.3.1 Key Agreement Schemes 25 3.3.2 Digital Signature Schemes 26 3.3.3 Encryption Schemes 27 3.3.4 Message-Encoding Methods 28 3.3.5 Key Derivation Functions 28 3.4 Limitation 29 3.5 Reason for choosing ECC as the applied method 29 Chapter 4. Proposal Security Architecture for IEEE 802.16 Standard in Mesh Mode 30 4.1 Network entry in mesh mode 30 4.2 Security associations 31 4.3 X.509 certificate profile 33 4.4 PKM authorization 34 4.5 Privacy and key management 35 4.6 Encryption 36 4.6.1 Encryption of AK 36 4.6.2 Encryption of TEK 36 4.6.3 Data encryption 36 Chapter 5. Elliptic Curve Cryptography Scheme – ECDSA Implementation 38 5.1 Domain Parameters 38 5.1.1 Definitions 38 5.1.2 Domain parameters generation 39 5.1.3 Domain parameters validation 39 5.2 ECDSA Key Pairs 44 5.2.1 Key pair generation 45 5.2.2 Public key validation 45 5.3 ECDSA Signature Generation and Verification 46 5.3.1 ECDSA signature generation 46 5.3.2 ECDSA signature verification 47 5.4 Encryption and Decryption 48 5.5 Security and Interoperability Consideration 49 5.5.1 Security consideration 49 5.5.2 Interoperability consideration 49 Chapter 6. Conclusion 50 6.1 Summary 50 6.2 Conclusion 50 6.3 Recommendation for future work 51 Bibliography 52 Biography 54

    [1] IEEE Standard 802.16-2004,“IEEE standard for local and metropolitan area networks, part 16: air interface for fixed broadband wireless access systems,” June 2004.
    [2] IEEE Standard 1363a-2004,“IEEE Standard Specifications for Public-Key Cryptography, Amendment 1: Additional Techniques,”September 2004.
    [3] WiMax Forum, http://www.wimaxforum.org/home/, May 2006.
    [4] Crypto++ Library 5.6.0, http://www.cryptopp.com/, March 2009.
    [5] I.F. Akyildiz, X. Wang and W. Wang,“Wireless mesh networks: a survey,”Computer Networks Journal (Elsevier), Vol. 47, pp. 445-487, March 2005.
    [6] D. Johnston and J. Walker,“Overview of IEEE 802.16 security,”IEEE Security & Privacy, May/June 2004.
    [7] M. Barbeau,“Wimax/802.16 threat analysis,”Proc the 1st ACM International workshop on Quality of service & security in wireless and mobile networks (Q2SWinet'05), Montreal, Quebec, Canada, October 13, 2005.
    [8] W.A. Arbaugh, N. Shankar, Y.C. Wan, and K. Zhang,“Your 802.11 wireless network has no clothes,”IEEE Wireless Communications, December 2002.
    [9] F. Yang, H. Zhou, L. Zhang, and J. Feng,“An improved security scheme in WMAN based on IEEE standard 802.16,”Proc 2005 International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, Sept. 23-26, 2005 [10] IETF RFC 3610, Counter with CBC-MAC (CCM), September 2003.
    [11] IETF RFC 3748,“Extensible Authentication Protocol,”June 2004.
    [12] Sen Xu, Manton Matthews, and Chin-Tser Huang,“Security Issues in Privacy and Key Management Protocols of IEEE 802.16”.
    [13] Y. Zhou and Y. Fang,“Security of IEEE 802.16 in Mesh,”Military Communications Conference, 2006. MILCOM 2006 Volume, Issue, 23-25 Oct. 2006 Page(s):1 - 6
    [14] V. Miller,“Uses of Elliptic Curves in Cryptography,”Lecture Notes in Computer Science 218: Advances in Cryptology - CRYPTO'85. Berlin: Springer-Verlag, 1986, pp. 417-426.
    [15] N. Koblitz,“Elliptic Curve Cryptosystems,”Mathematics of Computation, vol. 48, pp. 203-209, 1987.
    [16] Rivest RL,“The RC4 Encryption Algorithm,”RSA Data Security, Inc. March 1992.
    [17] L. Blunk and J. Vollbrecht,“PPP Extensible Authentication Protocol (EAP),”RFC 2284, March 1998.
    [18] B. Aboba and D. Simon,“PPP EAP TLS Authentication Protocol,”RFC 2716, October 1999.
    [19] ETSI. Telecommunications and internet protocol harmonization over networks (TIPHON) release 4; protocol framework definition; methods and protocols for security; part 1: Threat analysis. Technical Specification ETSI TS 102 165-1 V4.1.1, 2003.

    QR CODE