簡易檢索 / 詳目顯示

研究生: 廖建胤
CHIEN-IN LIAO
論文名稱: 筆記型電腦樞紐承架設計與可靠度研究
Reliabilities of Laptop’s Hinge Support Frame of Various Designs
指導教授: 林舜天
St Lin
口試委員: 林舜天
St Lin
林寬泓
Kh Lin
蔡秉均
Ping-Chun Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 整份114頁
中文關鍵詞: 樞紐承架ANSYS安全係數三點彎曲測試回火韌性
外文關鍵詞: Hinge support frame, ANSYS, Safety factor, Three-point bending test, Tempering, Toughness
相關次數: 點閱:314下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討樞紐承架結構設計流程,利用ANSYS來模擬開闔過程中的應力數據。找出最佳安全係數的樞紐組態,並比較不同熱處理條件的承架於抗彎、硬度的變化值分佈,接著藉由樞紐扭力壽命測試來探討樞紐衰退曲線分佈。由變化值分佈與衰退曲線分佈進而探討可靠度與安全係數的關係。
    由實驗數據得知,T型雙片承架、板厚1.2 mm、螺絲4顆且位置靠近力的傳遞線,對降低應力有相當的幫助。ANSYS的應用可提供設計者調整設計參數,完善樞紐承架設計,提高開模後的可靠度測試品質。依照ANSYS分析後的最佳組態,實測不同熱處理試件的抗彎測試,由試件承受的能量得知抗彎效果淬火和回火試件是淬火試件的7.42倍,是未熱處理試件的2.18倍。熱處理條件會影響材料韌性,由其變化值的差異比較表得知,淬火和回火品其最大位移變化值(差異29.0%)、最大力量變化值(差異30.0%)及最大力量衝擊能變化值(差異31.2%)。由於實驗數據得知變化值差異仍過大,表示品質呈現不穩定,因此業界為了提高良率而將安全系數設高,若能找出製程變異,才能提高可靠度,進而調降安全系數設定。扭力衰退值曲線分佈,利用加嚴測試可找出個別不良的樞紐變異,能提供給樞紐製造商針對變異提出分析並解決,才有機會提高製程準度及可靠度,也才有降低安全係數的設定。


    The research focuses on studying the design process of the hinge support frame structure. Utilizing ANSYS to simulate the stress data during opening and closing to find the configuration with the optimized safety factor. Compare the varying anti-bending behavior and hardness of frames that has been processed with different heat treatments, plus the torsion lifespan test to figure out the distribution of decline rate curves of the frame. Base on the two results, we can look into the connection between reliability and safety factor even further.
    According to the test result, T-type twin frame (t=1.2mm) reduce stress effectively when the locations of 4 screws are close to the force connection line. Designers can utilize ANSYS to adjust parameters, thus improving the hinge support frame design and the result of reliability test after tooling was made. Adopting the optimized configuration, analyzed by ANSYS, to perform the anti-bending test on samples that had been processed with different heat treatments, we found that the performance of samples that were treated with both quenching and tempering was 7.42 times better than those only treated with quenching, and 2.18 times better than unheated samples. Heat treatments affect toughness and hardness of the material. From the comparison of differences, our findings are as follows: the maximum difference of displacement is 29%, for the force that have an effect on toughness is 30%, and 31.2% for impact force energy. The large differences indicate that the quality is unstable. Thus, the industry has to adopt high safety factor setting in order to improve the yield rate. Through the tightened inspection, we can figure out the variations of defective hinges, and provide the data to manufacturers to analyze and solve the variations. In this way, we can increase the accuracy and reliability of the manufacturing process, and thus lower the safety factor setting in the end.

    摘要....................................I Abstract................................II 誌謝....................................IV 目錄....................................V 圖索引..................................IX 表索引..................................XIII 第1章 緒論..............................1 1.1 研究背景............................1 1.2 研究目的............................2 第2章 基礎理論與文獻探討................3 2.1 筆記型電腦常用樞紐簡介..............4 2.1.1 Auto-Lock Hinge...................6 2.1.2 包覆式Hinge.......................7 2.1.3 360度Flip Hinge...................8 2.2 樞紐承架設計準則....................9 2.2.1 承架種類..........................10 2.2.2 承架材質..........................11 2.2.3 承架固定方式......................12 2.2.4 承架堆疊板厚......................12 2.2.5 承架定位與鎖固分佈................15 2.2.6 承架補強方式......................17 2.3 扭力壽命測試簡介....................18 2.4 韋伯分佈簡介........................19 2.4.1 韋伯分佈之可靠度函數..............19 2.4.2 韋伯三參數代表之意義..............20 2.5 文獻探討............................22 2.5.1 可靠度與安全係數研究文獻..........22 2.5.2 金屬材料斷裂研究文獻..............26 2.5.3 熱處理研究文獻....................28 第3章 實驗規劃..........................30 3.1 CAE、應力、變形模擬.................31 3.1.1 實驗目的..........................31 3.1.2 實驗所需設備及材料................33 3.1.3 實驗步驟..........................34 3.2 三點彎曲測試........................42 3.2.1 實驗目的..........................42 3.2.2 實驗所需設備及材料................43 3.2.3 實驗步驟..........................46 3.3 硬度測試............................47 3.3.1 實驗目的..........................47 3.3.2 實驗所需設備及材料................47 3.3.3 實驗步驟..........................48 3.4 扭力壽命測試........................49 3.4.1 實驗目的..........................49 3.4.2 實驗所需設備及材料................49 3.4.3 實驗步驟..........................51 第4章 結果與討論........................53 4.1 CAE應力、變形模擬結果與討論.........53 4.2 三點彎曲測試結果與討論..............57 4.3 硬度測試結果與討論..................63 4.4 扭力壽命測試結果與討論..............64 第5章 結論與未來展望....................69 5.1 結論................................69 5.2 未來展望............................71 參考文獻................................74 附錄 A:各組態應力、變形ANSYS分析圖.....79 附錄 B:三點彎曲測試各類試件彎曲狀況....95 附錄 C:硬度量測數據....................96 附錄 D:扭力壽命測試各階段數據..........97

    [1] 鑫禾科技股份有限公司,「106年度年報」,2018。
    [2] 螢幕分離示意圖,2016年2月23日上傳。檢自https://www.mobile01.com/topicdetail.php?f=514&t=4717394 ,2021年1月檢索。
    [3] Omdia Mobile PC Market Tracker, “Omdia research shows Global notebook PC shipments with 4.7% Y/Y growth in 2021, driven by 28.7% Y/Y growth of strong Chromebook demand,” 2020.
    [4] 新日興股份有限公司,「Hinge簡介」,32233教育訓練課程。
    [5] 吳裕慶,「機械材料學」,台灣,大中國圖書公司,1998。
    [6] 新日興股份有限公司,「板金分析補強建議」,教育訓練課程。
    [7] 順瀅企業股份有限公司,「轉軸扭力耐久試驗機」,MODEL:5300T。
    [8] R. B. Abernethy, J. E. Breneman, C. H. Medlin, and G. L. Reinman, “Weibull Analysis Handbook,” DTIC AND NTIS, 1983.
    [9] P. D. T. O’Conner,“Practical Reliability Engineering, ”3rdEdition, John Wiley & Sons, New York, 1986, Chapter1-6.
    [10] B. Faucher and W. R. Tyson, “On the Determination of Weibull Parameters,” Journal of Material Science Letters, Vol.7, 1988, pp.1199-1203.
    [11] 郭致誠,「鋁合金6063-T5電阻點焊接合條件及拉剪強度之可靠度分析」,國立臺灣師範大學工業教育研究所,碩士論文,2002。
    [12] 野中保雄著,陳耀茂譯,「可靠度數據的蒐集與整理方法性」,大學圖書供應社出版,1992,第3-4章。
    [13] 劉慶源,「韋伯解析在A356鋁合金延性之應用研究」,國立臺灣師範大學工業教育學系,碩士論文,1994。
    [14] Lipson, C. Sheth, N. J. and Disney, R. L., “Reliability Prediction-Mechanical Stress/Strength Interference,” Rome Air Development Center, Technical Report No. RADC-TR-66-710, March 1967.
    [15] K. C. Kapur and L. R. Lamberson, “Reliability in Engineering Design,” 1977.
    [16] 戴久永,「可靠度論」,三民書局,1990。
    [17] 王宗華,「可靠度工程技術手冊」,中華民國品質學會發行,1996。
    [18] I. Elishakoff, "Stochasticity and safety factors: Part 1. Random actual stress and deterministic yield stress," Chaos, Solitons & Fractals, vol. 23, no. 1, pp. 321-331, 2005.
    [19] J. W. Bristow and P. E. Irving, "Safety factors in civil aircraft design requirements," Engineering Failure Analysis, vol. 14, no. 3, pp. 459-470, 2007.
    [20] C. T. Modlin and J. J. Zipay, " The 1.5 & 1.4 Ultimate Factors of Safety for Aircraft & Spacecraft–History, Definition and Applications," Definition and Applications, NASA STI, 2014.
    [21] B. Stauder, H. Kerber, and P. Schumacher, "Foundry sand core property assessment by 3-point bending test evaluation," Journal of Materials Processing Technology, 06/01 2016.
    [22] G. Qian, Y. Cao, M. Niffenegger, Y. J. Chao, and W. Wu, "Comparison of constraint analyses with global and local approaches under uniaxial and biaxial loadings," European Journal of Mechanics - A/Solids, vol. 69, pp. 135-146, 2018.
    [23] F. Beremin, A. Pineau, F. Mudry, J. C. Devaux, Y. D. Escatha, and P. Ledermann, "A local criterion for cleavage fracture of a nuclear pressure vessel steel," Metall Trans A 14, pp. 2277–2287, 1983.
    [24] X. Gao, G. Zhang, and T. S. Srivatsan, "A probabilistic model for prediction of cleavage fracture in the ductile-to-brittle transition region and the effect of temperature on model parameters," Materials Science and Engineering: A, vol. 415, no. 1-2, pp. 264-272, 2006.
    [25] J. S. Sun, K. H. Lee, and H. P. Lee, "Effects of geometry and fillet radius on die stresses in stamping processes," Journal of Materials Processing Technology, vol. 104, no. 3, pp. 254-264, 2000/08/31/ 2000.
    [26] E. J. Pavlina and C. J. Van Tyne, "Correlation of Yield Strength and Tensile Strength with Hardness for Steels," Journal of Materials Engineering and Performance, vol. 17, no. 6, pp. 888-893, 2008.
    [27] J. Lian, H. Yang, N. Vajragupta, S. Münstermann, and W. Bleck, "A method to quantitatively upscale the damage initiation of dual-phase steels under various stress states from microscale to macroscale," Computational Materials Science, vol. 94, pp. 245-257, 2014.
    [28] S. Münstermann, J. Lian, and W. Bleck, "Design of damage tolerance in high-strength steels," Int. J. Mater. Res. 103, pp. 755–764, 2012.
    [29] C. C. Tasan, J. P. M. Hoefnagels, C. H. L. J. ten Horn, and M. G. D. Geers, "Experimental analysis of strain path dependent ductile damage mechanics and forming limits," Mechanics of Materials, vol. 41, no. 11, pp. 1264-1276, 2009.
    [30] J. Lian, M. Sharaf, F. Archie, and S. Münstermann, "A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets,"Int. J. Damage Mech. 22, pp. 188-218, 2013.
    [31] ASM Handbook Committee, "ASM Handbook Volume 4 Heat Treating," ASM Standards, American Society for Metals, Materials Park, OH. 1991.
    [32] K. Han, D. V. Edmonds, and G. D. W. Smith, "Optimization of mechanical properties of high-carbon pearlitic steels with Si and V additions," Metallurgical and Materials Transactions A, vol. 32, no. 6, pp. 1313-1324, 2001.
    [33] D. E. Lescano and S. P. Silvetti, "Study of Microestructure and Tempered Martensite Embrittlement in Aisi 15b41 Steel," Procedia Materials Science, vol. 1, pp. 134-140, 2012.
    [34] MINITAB軟件操作及應用(2),2013 年9月12日上傳。檢自https://wenku.baidu.com/view/e3a5ab294a7302768e993973.html,2021年1月檢索。
    [35] 威布爾(Weibull)分佈的壽命試驗方法,2016 年6月16日上傳。檢自https://wenku.baidu.com/view/9c426259ec3a87c24128c42e.html?re=view,2021年1月檢索。

    QR CODE