簡易檢索 / 詳目顯示

研究生: 林晉德
Chin-Te Lin
論文名稱: 主筋內縮鋼管圍束鋼筋混凝土柱往復載重行為研究
Cyclic Tests of Steel-Tube Confined Reinforced Concrete Column with Centered Longitudinal Reinforcement
指導教授: 鄭敏元
Min-Yuan Cheng
口試委員: 黃世建
Shyh-Jiann Hwang
邱建國
Chien-Kuo Chiu
陳正誠
Cheng-Cheng Chen
鄭敏元
Min-Yuan Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 162
中文關鍵詞: 鋼管圍束鋼筋混凝土往復載重強度有效撓曲剛度
外文關鍵詞: STCRC, cyclic load, strength, effective stiffness
相關次數: 點閱:172下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無梁版構架系統需避免穿透剪力破壞,此破壞模式不但無預警,且容易造成大規模連續倒塌。過去研究顯示版柱接合部穿透剪力強度與樓版局部轉角相關,轉角變形越大則剪力強度越低(剪力衰減),若能限制接合部樓版變形,應可有效提升接合部穿透剪力強度。據此,本研究針對無梁版構架系統提議強版弱柱的新構想,發展一新型柱使接合部變形能集中在柱端,要滿足此條件此柱應具有低勁度,且在大變形下能維持其設計軸力強度的特性。鋼管圍束鋼筋混凝土柱,將主筋集中在斷面中心應可滿足上述特性,藉由大尺寸構件實驗,本研究主要目的欲探討此設計之可行性。

    本研究總共測試六組試體,主要測試變數包含:(1)斷面尺寸、(2)軸壓比、與(3)鋼管端部切削與否,所有試體在固定軸壓下承受往復水平載重,實驗結果發現所有試體均可維持軸力與彎矩強度超過層間位移角8%,實驗主要因安全考量而停止,試體變形量主要集中在柱端。就試體強度而言以ACI 318-19 (2019)計算之彎矩強度明顯低估試體之最大強度,因此本研究提出一強度預測模型,以合理評估試體強度。另外,試體撓曲剛度分佈約在0.5EcIe ~ 0.7EcIe間,變化主要與軸力大小有關,本研究因此提出一剛度模型以考量軸力變化對撓曲剛度之影響。

    整體而言,在相同斷面與主筋比的情況下,新型柱強度較一般鋼筋混凝土柱高。撓曲剛度略低,惟試體在高軸壓下具有相當優異之變形能力,在相同軸力作用下,新型柱應可大幅縮小其斷面大小而不會影響其往復載重行為。


    Slab-column connection is succeptible to punching shear failure. This type of failure has to be prevented due to its brittle failure mode and tendency to trigger progressive collapse. Previous studies have shown that punching shear capacity of slab-column connection decays as the connection rotation increases. Based on this, this study proposes a new idea for slab-column framed system-strong slab weak column. In this sytem, deformation is expected to be primarily absorbed at the column ends and thus reduce the connection rotation to sustain the connection punching shear capacity. The proposed column then needs to have lower lateral stiffness to absorb the connection rotation and sustain the designed axial load under larger lateral deformation. Those required charateristics may be achieved by using the steel tube confined reinforced concrete column with longitudinal reinforcement concentrated at the center of the cross section. A test program is conducted to investigate the potential of this new column.

    A total of six specimens were tested in this study. The main test variables include: (1) section size, (2) axial compression ratio, and (3) whether the end of the steel tube is cut or not. All specimens are subjected to cyclic lateral load under fixed axial compression. Experimental results indicate that all test specimens sustain the designed axial force and peak lateral road to more than 8% drift. Tests are terminated due to safety concerns. Deformation appears to be concentrated at the end of column. The nominal flexural strength calculated by ACI 318-19 (2019) significantly underestimates specimen peak strength. A strength model is developed in this study to reasonably evaluate the strength of the specimen. The range of specimen flexural stiffness is between 0.5EcIe ~ 0.7EcIe. The increase of flexural stiffness appears to primarily associated with the axial force. A stiffness model is then proposed based on test results.

    On the whole, the peak strength of the proposed column is higher than that of the typical reinforced concrete column with the same cross section and reinforcement ratio. Flexural stiffness of the proposed column is slightly lower. Considering that the proposed specimen has superior deformability under high axial load, the cross section of the proposed column can be further reduced without adversely impacting its cyclic behavior.

    摘要 I Abstrsct II 目錄 IV 圖目錄 X 表目錄 XIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 4 1.3 研究方法 6 1.4 論文內容架構 7 第二章 文獻回顧 9 2.1 鋼管充填混凝土柱型式 9 2.2 破壞模式 11 2.2.1 單向垂直載重 11 2.2.2 垂直與側向往復載重 13 2.3 強度與勁度 16 2.3.1 單向垂直載重 16 2.3.2 垂直與側向往復載重 21 2.4 螺旋箍筋剪力強度 27 2.5 彎矩與剪力強度放大 30 2.6 有效剛度(Effective stiffness, EIeff ) 32 第三章 試驗規劃 35 3.1 試體設計 35 3.1.1 柱斷面462 mm試體 41 3.1.2 柱斷面308 mm試體 45 3.2 試驗配置 48 3.2.1 試體配置 48 3.2.2 量測儀器配置 51 3.3 試體製作 58 3.3.1 鋼筋應變計 59 3.3.2 試體施作 60 3.4 試驗步驟 63 第四章 實驗結果分析 67 4.1 材料試驗分析 67 4.1.1 混凝土圓柱試體抗壓試驗 67 4.1.2 鋼筋拉伸試驗 72 4.1.3 鋼材拉伸試驗 75 4.2 試體測試過程 78 4.3 試體測試結果修正 80 4.3.1 層間位移角修正 80 4.3.2 彎矩修正 82 4.3.3 遲滯迴圈與包絡線 85 4.4 試體曲率分析 92 4.5 彎矩強度分析 94 4.6 試體有效撓曲剛度EIeff 98 4.7 試體軸向變形 104 第五章 結論與建議 105 5.1 結論 105 5.2 建議 106 參考資料 107 附錄A 應變計圖 111 附錄B 混凝土圓柱試體結果 139

    Aboutaha, R. S.; and Machado R. I., 1999, “Seismic Resistance of Steel-Tubed High-Strength Reinforced -Concrete Columns”, J. Struct. Eng., 125(5), pp. 485-494.

    ACI Committee 318, 2019, “Building Code Requirements for Structural Concrete and Commentary (ACI318-19)”, American Concrete Institute Farmington Hill, Michigan, 623 pp.

    Ang, B. G., 1985, “Seismic Shear Strength of Circular Bridge Pires”, Ph. D. Thesis, Cicil Engineering at the University of Canterbury. 407 pp.

    Ang, B. G.; Priestley, M. J. N.; and Paulay T., 1989, “Seismic Shear Strength of Circular Reinforced Concrete Columns”, ACI Structural Journal, 86(1), pp. 45-59.

    ANSI/AISC 360, 2010, “Specifications for Structural Steel Building (AISC360-10)”, American Institute of steel construction, Chicago, pp. 16.1-82-16.1-86.

    ANSI/AISC 360, 2016, “Specifications for Structural Steel Building (AISC360-16)”, American Institute of steel construction, Chicago, pp. 16.1-87-16.1-92.

    ASCE/SEI 41, 2017, “Seismic Evaluation and Retrofit of Existing Buildings”, American Society of Civil Engineers/Structural Engineering Institute, Reston, Virginia, 576 pp.

    ASTM C39/C39M, 2021, “Standard Test Methods for Compressive Strength of Cylindrical Concrete Specimens”, American Standard Test Method, West Conshohocken, 8 pp.

    ASTM E8/E8M, 2021, “Standard Test Methods for Tension Testing of Metallic Materials”, American Standard Test Method, West Conshohocken, 30 pp.

    Elwood, K. J.; and Eberhard, M. O., 2009, “Effective Stiffness of Reinforced Concrete Columns”, ACI Structural Journal, 106(4), pp. 476-484.

    Guo, L.; Liu, Y.; Fu, F.; and Huang H., 2019, “Behavior of axially loaded circular stainless steel tube confined concrete stub columns”, Thin-Walled Structures, 139(2019), pp. 66-76.

    Hoang, A. L.; and Fehling, E., 2017, “Numerical study of Circular Tube Confined Concrete (STCC) Stub Columns”, J. Constructional Steel Research, 136(September 2019), pp. 238-255.

    Liu, J.; Abdullah, J. A.; and Zhang, S., 2011, “Hysteretic behavior and design of square tubed reinforced and steel reinforced concrete (STRC and/or STSRC) short columns”, Thin-Walled Structrues, 49(2011), pp. 874-888.

    Mises, R. v., 1913, “Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse”, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1913(1913), 528-592.
    Moon, J.; Lehman, D. E.; Roeder, C. W.; and Lee, H. E., 2013, “Strength of Circular Concrete-Filled Tubes with and without Internal Reinforcement under Combined Loading”, J. Struct. Eng., 139(12):04013012, pp. 1-12.

    Muttoni, A., 2008, “Punching Shear Strength of Reinforced Concrete Slabs without Transverse Reinforcement”, ACI Structural Journal, 105(4), pp. 440-450.

    Priestley, M. J. N.; and Park, R., 1987, “Strength and Ductility of Concrete Bridge Columns Under Seismic Loading”, ACI Structural Journal, 84(1), pp. 61-76.

    Priestley, M. J. N.; Seible, F.; Xiao, Y.; and Verma, R., 1994, “Steel Jacket Retrofitting of Reinforced Concrete Bridge Columns for Enhanced Shear Strength—Part 1: Theoretical Considerations and Test Design”, ACI Structural Journal, 91(4), pp. 394-405.

    Roeder, C. W.; Lehman, D. E.; and Bishop, E., 2010, “Strength and Stiffness of Circular Concrete-Filled Tubes”, J. Struct. Eng., 136(12), pp. 1545-1553.

    Seangatith, S.; and Thumrongvut, J., 2011, “Behaviors of Square Thin-Walled Steel Tubed RC Columns under Direct Axial Compression on RC Core”, Procedia Engineering, 14(2011), pp. 513-520.

    Wang, Y.; Cai, G.; Li, Y.;Waldmann, D.; and Larbi, S. A., 2019, “Behavior of Circular Fiber-Reinforced Polymer–Steel-Confined Concrete Columns Subjected to Reversed Cyclic Loads: Experimental Studies and Finite-Element Analysis”, J. Struct. Eng., 145(9): 04019085, pp. 1-18.
    Yu, Q.; Tao, Z.; Liu W.; and Chen, Z. B., 2009, “Analysis and calculations of steel tube confined concrete (STCC) stub columns”, J. Constructional Steel Research, 66(1), pp. 53-64.

    QR CODE