簡易檢索 / 詳目顯示

研究生: 蘇建云
Jian-Yun Su
論文名稱: 以FPGA實現即時表情辨識系統
A Real-Time Facial Expression Recognition System Implemented on FPGA
指導教授: 王乃堅
Nai-Jian Wang
口試委員: 蘇順豐
Shun-Feng Su
鍾順平
Shun-Ping Chung
呂學坤
Shyue-Kung Lu
郭景明
Jing-Ming Guo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 82
中文關鍵詞: FPGA人臉偵測表情辨識即時
外文關鍵詞: FPGA, Face detection, Facial expression recognition, real-time
相關次數: 點閱:328下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,人們積極的研究人類與機器的互動方式,從早期的滑鼠、鍵盤和觸控裝置,到新興的指紋、手勢等等,互動的方式越來越多元及人性化,本論文即時表情辨識系統為一個人機互動系統,透過影像處理的方式,從攝影機擷取影像進行人臉偵測與表情辨識,並顯示辨識結果於螢幕上。

本論文提出一個以純硬體的數位電路來實現即時表情辨識系統,此系統分為兩大部分:(1)軟體端的前置作業,(2)硬體端的實際運作。軟體端的前置作業主要為以機器學習(Machine Learning)的方式訓練出硬體端所需要的人臉偵測與表情辨識的分類器。主要分為三個步驟:(1)人臉特徵提取,(2)閾值型/查表型弱分類器,(3)AdaBoost/Multi-Class AdaBoost演算法。在硬體端的實際運作主要分為三個步驟:(1)人臉候選區域擷取,(2)人臉偵測,(3)表情辨識,將這些步驟分別設計成硬體電路模組,此系統使用Verilog硬體描述語言(Hardware Description Language)以純硬體的方式設計,並在Altera DE2-115多媒體開發平台實現。

實驗結果顯示此系統使用了79,316 (69%)個邏輯元件(logic elements)和1,806,350 (45%) bits內部記憶體,系統辨識率為78.2%,且處理速度達每秒68張影像(NTSC Input)。


In recent years, people have actively studied the interaction between humans and machines. From the mouse and keyboard to fingerprints and gestures, interactive methods are becoming more and more diverse and humanized. Therefore, we proposed a real-time facial expression recognition system implemented on FPGA. This system is applied to human-computer interaction. Through image processing, the image captured from the camera is used to detect faces and recognize the expression on the face. After that, the recognition result is displayed on the screen.

In this thesis, our system is divided into two parts: (1) Off-line training work on PC environment, (2) Real-time processing implemented on FPGA. The classifiers needed for face detection and facial expression recognition on the FPGA are trained by PC-based Machine Learning. The training consists of three steps: (1) MB-LBP features extraction, (2) Weak classifiers (Threshold or Look-Up-Table), (3) Multi-Class AdaBoost algorithm. There are three steps in real-time processing: (1) Face candidate extraction, (2) Face detection, (3) Facial expression recognition. Each step is designed and modularized with Verilog HDL.

The experimental results show that our system requires 79,316 logic elements and 1,806,350 bits memory, which is about 69% of total logic elements and 45% of total memory. The whole system is designed on Altera DE2-115 which can process up to 68 frames per second at an operating frequency of 27.03MHz with 78.2% accuracy.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 論文目標 3 1.4 論文組織 4 第二章 人臉候選區域擷取 5 2.1 膚色偵測 5 2.1.1 RGB色彩空間 6 2.1.2 YCbCr色彩空間 6 2.2 形態學 7 2.2.1侵蝕 8 2.2.2膨脹 9 2.3 快速物件連通標記法 9 2.4 人臉候選區過濾 12 2.5 眼部區域定位 13 2.5.1 水平邊緣偵測 14 2.5.2 人臉候選區域框調整 15 2.6 人臉候選區正規化 16 第三章 人臉偵測與表情辨識 18 3.1 人臉偵測與表情辨識訓練環境 18 3.2 多區塊局部二值模式(Multi-Block LBP, MB-LBP) 19 3.3 人臉偵測 20 3.3.1 閾值型弱分類器 21 3.3.2 AdaBoost演算法 23 3.4 表情辨識 25 3.4.1 查表型弱分類器 26 3.4.2 Multi-Class AdaBoost演算法 29 第四章 系統硬體實現 32 4.1 系統架構 32 4.2 膚色偵測硬體設計 33 4.3 形態學硬體設計 33 4.3.1 侵蝕硬體設計 34 4.3.2 膨脹硬體設計 35 4.4 快速物件連通標記法硬體設計 35 4.5 人臉候選區過濾硬體設計 37 4.6 眼部區域定位硬體設計 38 4.7 候選區正規化硬體設計 40 4.8 人臉偵測硬體設計 41 4.9 表情辨識硬體設計 42 第五章 實驗結果與分析 44 5.1 ModelSim演算法驗證 44 5.1.1 演算法驗證環境 44 5.1.2 人臉偵測驗證 45 5.1.3 表情一:生氣 46 5.1.4 表情二:厭惡 47 5.1.5 表情三:恐懼 48 5.1.6 表情四:快樂 49 5.1.7 表情五:難過 50 5.1.8 表情六:驚訝 51 5.1.9 演算法驗證結果分析 52 5.1.10 Extended Cohn-Kanade表情資料庫之驗證與比較 52 5.2 DE2-115開發平台驗證 54 5.2.1 DE2-115開發平台介紹 54 5.2.2 攝影機介紹 56 5.2.3 DE2-115開發平台驗證結果 57 5.2.4 FPGA硬體資源使用 58 5.2.5 系統延遲 59 5.2.6 系統執行速度比較 60 5.3 人臉區域與弱分類器數量之比較 61 5.4 弱分類器數量與硬體資源之比較 62 5.5 軟體端表情辨識訓練過程分析 63 第六章 結論與未來研究方向 65 6.1 結論 65 6.2 未來研究方向 65 參考文獻 67

[1] K.-T. Hu, Y.-T. Pai, S.-J. Ruan, and E. Naroska, “A hardware-efficient color segmentation algorithm for face detection,” in 2010 IEEE Asia Pacific Conference on Circuits and Systems, 2010, pp. 688–691.
[2] R.-L. Hsu, M. Abdel-Mottaleb, and A. K. Jain, “Face detection in color images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 696–706, 2002.
[3] Y. Hou and Q. Peng, “Face detection based on AdaBoost and skin color,” in 2009 Second International Symposium on Information Science and Engineering, 2009, pp. 407–410.
[4] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, pp. 511–518.
[5] M. Hiromoto, H. Sugano, and R. Miyamoto, “Partially parallel architecture for AdaBoost-based detection with haar-like features,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 1, pp. 41–52, 2008.
[6] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with local binary patterns: Application to face recognition,” IEEE Transactions on Pattern Analysis & Machine Intelligence, no. 12, pp. 2037–2041, 2006.
[7] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of texture measures with classification based on featured distributions,” Pattern Recognition, vol. 29, no. 1, pp. 51–59, 1996.
[8] L. Zhang, R. Chu, S. Xiang, S. Liao, and S. Z. Li, “Face detection based on multi-block LBP representation,” in International Conference on Biometrics. Springer, 2007, pp. 11–18.
[9] T. Kanade, J. F. Cohn, and Y. Tian, “Comprehensive database for facial expression analysis,” in Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580), 2000, pp. 46–53.
[10] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews, “The extended Cohn-Kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression,” in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, 2010, pp. 94–101.
[11] C. Shan, S. Gong, and P. W. McOwan, “Facial expression recognition based on local binary patterns: A comprehensive study,” Image and Vision Computing, vol. 27, no. 6, pp. 803–816, 2009.
[12] T. Hastie, S. Rosset, J. Zhu, and H. Zou, “Multi-class AdaBoost,” Statistics and its Interface, vol. 2, no. 3, pp. 349–360, 2009.
[13] Y. Wang, H. Ai, B. Wu, and C. Huang, “Real time facial expression recognition with AdaBoost,” in Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., vol. 3, 2004, pp. 926–929.
[14] R. E. Schapire and Y. Singer, “Improved boosting algorithms using confidence-rated predictions,” Machine learning, vol. 37, no. 3, pp. 297– 336, 1999.
[15] B. Wu, H. Ai, and C. Huang, “LUT-based AdaBoost for gender classification,” in International Conference on Audio-and Video-Based Biometric Person Authentication. Springer, 2003, pp. 104–110.
[16] N.-J. Wang, S.-C. Chang, and P.-J. Chou, “A real-time multi-face detection system implemented on FPGA,” in 2012 International Symposium on Intelligent Signal Processing and Communications Systems, 2012, pp. 333–337.
[17] M. Hu, S. Worrall, A. Sadka, and A. Kondoz, “Face feature detection and model design for 2D scalable model-based video coding,” 2003.
[18] L. He, Y. Chao, K. Suzuki, and K. Wu, “Fast connected-component labeling,” Pattern Recognition, vol. 42, no. 9, pp. 1977–1987, 2009.
[19] L. He, Y. Chao, and K. Suzuki, “A run-based two-scan labeling algorithm,” IEEE Transactions on Image Processing, vol. 17, no. 5, pp. 749– 756, 2008.
[20] 王乃堅、洪信甫,“即時瞳孔辨識系統”台灣科技大學碩士論文,民國一百零三年。
[21] D. Liliana, “Emotion recognition from facial expression using deep convolutional neural network,” in Journal of Physics: Conference Series, vol. 1193, no. 1, 2019, p. 012004.
[22] P. T. Vinh and T. Q. Vinh, “Facial expression recognition system on SoC FPGA,” in 2019 International Symposium on Electrical and Electronics Engineering (ISEE), 2019, pp.1–4.
[23] Terasic DE2-115 datasheet.
URL: https://www.terasic.com.tw/tw/
[24] Sony EVI-D70技術手冊.
URL: https://pro.sony/en_GR/products/ptz-network-cameras/evi-d70-d70p-pal-

無法下載圖示 全文公開日期 2025/07/24 (校內網路)
全文公開日期 2025/07/24 (校外網路)
全文公開日期 2025/07/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE