簡易檢索 / 詳目顯示

研究生: 徐嘉杰
Chia-Chieh Hsu
論文名稱: 含四苯乙烯小分子衍生物與高分子合成及性質鑑定
Synthesis and Characterization of Small Molecules and Polymers Based on Tetraphenylethene Derivatives
指導教授: 游進陽
Chin-Yang Yu
口試委員: 王承浩
Chen-Hao Wang
堀江正樹
Masaki Horie
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 132
中文關鍵詞: 四苯乙烯[2.2]對環芳烷聚集誘導發光氟化機械致螢光變色
外文關鍵詞: tetraphenylethene, [2.2]paracyclophane, aggregation-induce emission, fluorination, mechanochromism
相關次數: 點閱:375下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要探討共軛高分子與共軛分子含有四苯乙烯分子的合成與性質探討。前者共軛高分子為[2.2]對環芳烷與四苯乙烯所形成交替共聚物,後者為D-A-D共軛分子(D為四苯乙烯,A為苯並噻二唑)。 相較於傳統的螢光分子,四苯乙烯分子與其衍生物具有聚集誘導發光,此類型螢光材料在固體狀態可產生高強度螢光。所選用的高分子聚合反應為鈴木偶合反應,透過一系列的反應條件中,我們發現鹼的濃度與鈀金屬催化劑的選擇對於合成高分子有一定程度的影響。所合成的高分子具有高強度綠色熒光而添加二硝基甲苯可導致其螢光消光。
部份四苯乙烯分子的衍生物在不同的固體結構可以產生不同顏色的螢光,在這裡我們合成氟原子取代苯並噻二唑將導致鈴木偶合反應效率下降。我們所合成具有聚集誘導發光性質的氟取代衍生物在經過熱處理前後形成明顯的螢光顏色差異。


This thesis presents the synthesis and properties of novel conjugated polymers containing [2.2]paracyclophane and tetraphenylethene and donor-acceptor-donor type of conjugated molecules containing benzothiadiazole and tetraphenylethene. Compared with conventional fluorescent materials, new materials containing tetraphenylethene exhibited high emission in the solid state, well-known aggregation-induced emission. According a series of reaction conditions, we found base and catalyst could optimize the polymerization. These two-dimension conjugated polymers are green fluorescence and DNT could quench its fluorescence in the solid state.
Particularly, the emission color of tetraphenylethene derivatives is highly depends on its structure mode in the solid. Here, we choose incorporation fluorine atom to build novel fluorescent materials. Fluorinated substitution benzothiadiazole could decrease efficiency of Suzuki cross-coupling reaction. These fluorinated fluorescent materials display high color contrast in the solid state by thermal stimulus.

Table of content Table of content II Abstract VI 中文摘要 VII Acknowledgements VIII Chapter 1. Introduction and aim 1 1.1 Introduction to conjugated polymers 2 1.1.1 π-Conjugated materials 2 1.1.2 π-Conjugated polymers 3 1.1.3 Band gap of conjugated polymer 4 1.2 Introduction to π stacked polymers 5 1.2.1 π Stacked polymers 5 1.2.2 [2,2]Paracyclophane 6 1.2.3 [2.2]Paracyclophane-based conjugated polymers 8 1.3 Introduction to aggregation-induced emission 11 1.3.1 Restriction of Intermolecular Rotation 12 1.3.2 Chemosensors 14 1.4 Aim of project 16 Chapter 2. Results and Discussion 17 2.1 Synthesis and characterization 18 2.1.1 Synthesis and characterization of monomers 18 2.1.2 Synthesis and characterization of precursors 22 2.1.3 Synthesis and characterization of target molecules 25 2.1.4 Synthesis and characterization of model compound and target polymers 28 2.2 Properties 33 2.2.1 Optical properties to target molecules 33 2.2.2 Optical properties to model compound and polymers 35 2.2.3 Electrochemical properties to target polymers 38 2.2.4 Thermal properties 39 2.3 Explosive detection 41 2.3.1 Explosive detection in the solution 41 2.3.2 Explosive detection in the solid state 43 Reference 45 Chapter 3. Result and Discussion 49 3.1. Introduction to Mechanochromism 50 3.1.1 Mechanochromic materials 50 3.1.2 Donor-Acceptor molecules 51 3.2 Synthesis and characterization 54 3.2.1 Synthesis and characterization of precursors 54 3.2.2 Synthesis and characterization of target molecules 58 3.3 Properties 60 3.3.1 Optical properties to target molecules 60 3.3.2 Structure relationship of target molecules 64 3.3.3 Thermal properties to target molecules 68 3.4 Solvatochromism behavior 70 3.5 Mechanochromism behavior 72 Reference 75 Chapter 4. Conclusion 78 4.1 Conclusions 79 Chapter 5. Experimental 80 5.1 General procedure 81 5.2 Synthesis of monomers 82 5.2.1 Synthesis of pseudo-para-dibromo[2,2]paracyclophane 82 5.2.2 Synthesis of pseudo-meta-dibromo[2,2]paracyclophane 83 5.2.3 Synthesis of (E,Z) 1,2-bis(4-bromophenyl)-1,2-diphenylethene 83 5.2.4 Synthesis of (E,Z) 1,2-diphenyl-1,2-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethene 84 5.3 Synthesis of precursors, model compound 85 5.3.1 Synthesis of 1-(4-Bromophenyl)-1,2,2-triphenylethylene 85 5.3.2 Synthesis of 4,4,5,5-tetramethyl-2-(4-(1,2,2-triphenylvinyl) phenyl)-1,3,2-dioxaborolane 86 5.3.3 Synthesis of (E,Z) 1,2-di([1,1'-biphenyl]-4-yl)-1,2-diphenylethene 87 5.4 Synthesis of target molecules 88 5.4.1 Synthesis of pseudo-para-bis(4-(1,2,2-triphenylvinyl)phenyl) [2,2]paracyclophane 88 5.4.2 Synthesis of pseudo-para-bis(4-(1,2,2-triphenylvinyl)phenyl) [2,2]paracyclophane 89 5.5 Synthesis of target polymers 90 5.5.1 A typical procedure using Pd(PPh3)4 as catalyst 90 5.5.2 A typical procedure using Pd(OAc)2 as catalyst 91 5.6 Synthesis of precursors and target molecules 92 5.6.1 Synthesis of 5-fluorobenzo[c][1,2,5]thiadiazole 92 5.6.2 Synthesis of 4,7-dibromo-5-fluorobenzo[c][1,2,5]thiadiazole 93 5.6.3 Synthesis of 5-fluorobenzo[c][1,2,5]thiadiazole 93 5.6.4 Synthesis of 4,7-dibromo-5,6-difluorobenzo[c][1,2,5]thiadiazole 94 5.6.5 Synthesis of 4,7-bis(4-(1,2,2-triphenylvinyl)phenyl) benzo[c][1,2,5]thiadiazole 94 5.6.6 Synthesis of 5-fluoro-4,7-bis(4-(1,2,2-triphenylvinyl)phenyl)benzo[c][1,2,5]thiadiazole 95 5.6.7 Synthesis of 5,6-difluoro-4,7-bis(4-(1,2,2-triphenylvinyl)phenyl)benzo[c][1,2,5]thiadiazole 96 Appendix. 97

[1] K. Wang, C. Liu, T. Meng, C. Yi, X. Gong, Chem. Soc. Rev. 2016, 45, 2937.
[2] A. Mishra, P. Bäuerle, Angew. Chem. Int. Ed. 2012, 51, 2020.
[3] K. A. Mazzio, C. K. Luscombe, Chem. Soc. Rev. 2015, 44, 78.
[4] J. Zhou, Y. Zuo, X. Wan, G. Long, Q. Zhang, W. Ni, Y. Liu, Z. Li, G. He, C. Li, B. Kan, M. Li, Y. Liu, Z. Li, J. Am. Chem. Soc. 2013, 135, 8484.
[5] P. M. Beaujuge, J. M. Fréchet, Am. Chem. Soc. 2011, 133, 20009.
[6] C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112, 2008.
[7] L. Zhang, C. Di, G. Yu, Y. Liu, J. Mater. Chem. 2010, 20, 7059.
[8] H. T. Yi, M. M. Payne, J. E. Anthony, V. Podzorov, Nat. Commun. 2012, 3, 1259.
[9] X. -H. Zhu, J. Peng, Y. Cao, J. Roncali, Chem. Soc. Rev. 2011, 40, 3509.
[10] M. Y. Wong, J. Electron. Mater. 2017, 46, 6246.
[11] M. D. McGehee, A. J. Heeger, Adv. Mater. 2000, 12, 1655.
[12] T. Zhai, T. Wang, L. Chen, X. Zhang, Nanoscale 2015, 7, 12312.
[13] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa,
E. J. Louis, S. C. Gau, A. G. MacDiarmid, Phys. Rev. Lett. 1977, 39, 1098.
[14] F. Lombeck, A. Sepe, R. Thomann, R. H. Friend, M. Sommer, ACS Nano 2016, 8087.
[15] M. L. Jones, D. M. Huang, B. Chakrabarti, C. Groves, J. Phys. Chem. C 2016, 120, 4240.
[16] L. Feng, C. Zhu, H. Yuan, L. Liu, F. Lv, S. Wang, Chem. Soc. Rev. 2013, 42, 6620.
[17] T. Junkers, J. Vandenbergh, P. Adriaensens, L. Lutsen, D. Vanderzande, Polym. Chem. 2012, 3, 275.
[18] J. H. Wosnick, C. M. Mello, T. M. Swager, J. Am. Chem. Soc. 2005, 127, 3400.
[19] B. Liu, B. S. Gaylord, S. Wang, G. C. Bazan, J. Am. Chem. Soc. 2003, 125, 6705.
[20] P. T. Boudreault, S. Beaupré, M. Leclere, Polym. Chem. 2010, 1, 127.
[21] H. J. Wang, C. P. Chen, R. J. Jeng, Materials 2014, 7, 2411.
[22] H. Kuhn, J. Chem. Phys. 1949, 17, 1198.
[23] S. S. Zade, N. Zamoshchik, M. Bendokov, Acc.Chem. Res. 2011, 44, 14.
[24] T. Nakano, Polym. J. 2010, 42, 103.
[25] D. J. Cram, J. M. Cram, Acc.Chem. Res. 1971, 4, 204.
[26] G. C. Bazan, W. J. Oldham, R. J. Lachicotte, S. Tretiak, V. Chernyak, S. Mukamel, J. Am. Chem. Soc. 1998, 120, 9188.
[27] Y. Morisaki, Y. Chujo, Polym. Chem. 2011, 2, 1249.
[28] S. P. Jagtap, D. M. Collard, J. Am. Chem. Soc. 2010, 132, 12208.
[29] J. D. Luo, Z. L. Xie, J. W. Y. Lam, L. Cheng, H. Y. Chen, C. F. Qiu, H. S. Kwok, X. W. Zhan, Y. Q. Liu, D. B. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740.
[30] J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718.
[31] J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang, B. Z. Tang, Adv. Mater. 2014, 26, 5429.
[32] J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu, B. Z. Tang, Chem. Mater. 2003, 15, 1535.
[33] L. C. Clark Jr, C. Lyons, Ann. N.Y. Acad. Sci. 1962, 102, 29.
[34] H. N. Kim, W. X. Ren, J. S. Kim, J. Yoon, Chem. Soc. Rev. 2012, 41, 3210.
[35] X. Wang, J. Hu, T. Liu, G. Zhang, S. Liu, J. Mater. Chem. 2012, 22, 8622.
[36] L. Liu, G. Zhang, J. Xiang, D. Zhang, D. Zhu, Org. Lett. 2008, 10, 4581.
[37] H. –T. Feng, S. Song, Y. –C. Chen, C. –H. Shen, Y. –S. Zheng, J. Mater. Chem. C 2014, 2, 2353.
[38] Y. Hong, S. Chen, C. W. T. Leung, J. W. Y. Lam, J. Liu, N. –W. Tseng, R. T. K. Kwok, Y. Yu, Z. Wang, B. Z. Tang, ACS Appl. Mater. Interfaces 2011, 3, 3411.
[39] D. G. Khandare, H. Joshi, M. Banerjee, M. S. Majik, A. Chatterjee, RSC Adv. 2014, 4, 47076.
[40] N. Na, F. Wang, J. Huang, C. Niu, C. Yang, Z. Shang, F. Han, J. Ouyang, RSC Adv. 2014, 4, 35459.
[41] Y. Zhang, D. Li, Y. Lia, J. Yu, Chem. Sci. 2014, 5, 2710.
[42] S. J. Toal, K. A. Jones, D. Magde, W. C. Trogler, J. Am. Chem. Soc. 2005, 127, 11661.
[43] Y. Wua, A. Qin, B. Z. Tang, Chin. J. Polym. Sci. 2017, 35, 141.
[44] Y. Liu, J. Nie, J. Niu, F. Meng, W. Lin, Scientific Reports 2017, 7, 7293.
[45] T.Tian, X. Chen, H. Li, Y. Wang, L. Guo, L. Jiang, Analyst 2013, 138, 991.
[46] A. J. Roche, B. Canturk, Org. Biomol. Chem. 2005, 3, 515.
[47] L. Bondarenko, I. Dix, H. Hinrichs, H. Hopf, Synthesis 2004, 16, 2751.
[48] H. Dodziuk, S. Szymański, J. Jaźwiński, M. Ostrowski, T. B. Demissie, K. Ruud, P. Kuś, H. Hopf, S. –T. Lin, J. Phys. Chem. A 2011, 115, 10638.
[49] J. Dong, A. K. Tummanapelli, X. Li, S. Ying, H. Hirao, D. Zhao, Chem. Mater. 2016, 28, 7889.
[50] W. Bai, Z. Wang, J. Tong, J. Mei, A. Qin, J. Z. Sun, B. Z. Tang, Chem. Commun. 2015, 51, 1089.
[51] M. Banerjee, S. J. Emond, S. V. Lindeman, R. Rathore, J. Org. Chem. 2007, 72, 8054.
[52] W. Wu, S. Ye, R. Tang, L. Huang, Q. Li, G. Yu, Y. Liu, J. Qin, Z. Li, Polymer 2012, 53, 3163.
[53] X. Fang, Y. Zhang, K. Chang, Z. Liu, X. Su, H. Chen, S. X. Zhang, Y. Liu, C. Wu, Chem. Mater. 2016, 28, 6628.
[54] R. Daik, W. J. Feast, A. S. Batsanovb, J. A. K. Howardb, New J. Chem. 1998, 22, 1047.
[55] W. Dong, Y. Pan, M. Fritsch, U. Scherf, J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 1753.
[56] J. Huang, X. Yang, X. Li, P. Chen, R. Tang, F. Li, P. Lu, Y. Ma, L. Wang, J. Qin, Q. Li, Z. Li, Chem. Commun. 2012, 48, 9586.
[57] Y. Morisaki, Y. Chujo, Bull. Chem. Soc. Jpn. 2005, 78, 288.
[58] L. Lin, Y. Morisaki, Y. Chujo, Int. J. Polym. Sci. 2010, 908128.
[59] J. Liu, Y. Zhong, P. Lu, Y. Hong, J. W. Y. Lam, M. Faisal, Y. Yu, K. S. Wong, B. Z. Tang, Polym. Chem. 2010, 1, 426.
[60] H. Feng, J. Wang, Y. Zheng, ACS Appl. Mater. Interfaces, 2014, 6, 20067.

[1] M. Irie, Chem. Rev. 2000, 100, 1685.
[2] S. Lim, B. An, S. D. Jung, M. Chung, S. Y. Park, Angew. Chem. Int. Ed. 2004, 43, 6346.
[3] M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, T. Kawai, Nature, 2002, 420, 759.
[4] A. Kishimura, T. Yamashita, K. Yamaguchi and T. Aida, Nat. Mater. 2005, 4, 546.
[5] X. Lu, M. Xia, J. Mater. Chem. C, 2016, 4, 9350.
[6] M. Kinami,B. R. Crenshaw, C. Weder, Chem. Mater. 2006, 18, 946.
[7] A. Pucci, R. Bizzarricd, G. Ruggeria, Soft Matter, 2011, 7, 3689.
[8] Y. Sagara, T. Mutai, I. Yoshikawa, K. Araki, J. Am. Chem. Soc. 2007, 129 ,1520.
[9] Y. Ooyama, G. Ito, H. Fukuoka, T. Nagano, Y. Kagawa, I. Imae, K. Komaguchi, Y. Harima, Tetrahedron 2010, 66, 7268.
[10] Y. Ooyama, Y. Harima, J. Mater. Chem. 2011, 21, 8372.
[11] Y. Sagara, T. Kato, Angew. Chem. Int. Ed. 2008, 47, 5175.
[12] M. Yuan, D. Wang, P. Xue, W. Wang, J. Wang, Q. Tu, Z. Liu, Y. Liu, Y. Zhang, J. Wang, Chem. Mater. 2014, 26, 2467.
[13] H. Yu, W. Ren, H. Lu, Y. Liang, Q. Wang, Chem. Commun. 2016, 52, 7387.
[14] Z. He, L. Zhang, J. Mei, T. Zhang, J. W. Y. Lam, Z. Shuai, Y. Q. Dong, B. Z. Tang, Chem. Mater. 2015, 27, 6601.
[15] H. Li, X. Zhang, Z. Chi, B. Xu, W. Zhou, S. Liu, Y. Zhang, J. Xu, Org. Lett. 2011, 13, 556.
[16] X. Zhou, H. Li, Z. Chi, X. Zhang, J. Zhang, B. Xu, Y. Zhang, S. Liu, J. Xu, New J. Chem. 2012, 36, 685.
[17] C. Li, X. Luo, W. Zhao, C. Li, Z. Liu, Z. Bo, Y. Dong, Y. Q. Dong, B. Z. Tang, New J. Chem. 2013, 37, 1696.
[18] N. Zhao, Z. Yang, J. W. Y. Lam, H. H. Y. Sung, N. Xie, S. Chen, H. Su, M. Gao, I. D. Williams, K. S.Wong, B. Z. Tang, Chem. Commun. 2012, 48, 8637.
[19] J. Tong, Y. Wang, J. Mei, J. Wang, A. Qin, J. Z. Sun, B. Z. Tang, Chem. Eur. J. 2014, 20, 4661.
[20] N. Zhao, M. Li, Y. Yan, J. W. Y. Lam, Y. L. Zhang, Y. S. Zhao, K. S. Wong, B. Z. Tang, J. Mater. Chem. C 2013, 1, 4640.
[21] X. Y. Shen, Y. J. Wang, E. Zhao, W. Z. Yuan, Y. Liu, P. Lu, A. Qin, Y. Ma, J. Z. Sun, B. Z. Tang, J. Phys. Chem. C 2013, 117, 7334.
[22] Y. Gong, Y. Tan, J. Liu, P. Lu, C. Feng, W. Z. Yuan, Y. Lu, J. Z. Sun, G. He, Y. Zhang, Chem. Commun. 2013, 49, 4009.
[23] M. Li, W. Yao, J. Chen, H. Lu, Y. Zhao, C Chen, J. Mater. Chem. C 2014, 2, 8373.
[24] T. S. van der Poll, J. A. Love, T. –Q. Nguyen, G. C. Bazan, Adv. Mater. 2012, 24, 3646.
[25] Brenno A. D. Neto,*
[a]
Alexandre A. M. Lapis,
[b]
Eufrânio N. da Silva Júnior,
[c]
and
Jairton Dupont
[d]
Brenno A. D. Neto,*
[a]
Alexandre A. M. Lapis,
[b]
Eufrânio N. da Silva Júnior,
[c]
and
Jairton Dupont
[d]
[25] B. A. D. Neto, A. A. M. Lapis, E. N. da Silva Júnior, J. Dupont, Eur. J. Org. Chem. 2013, 228.
[26] Y. Wang, X. Xin, Y. Lu, T. Xiao, X. Xu, N. Zhao, X. Hu, B. S. Ong, S. C. Ng, Macromolecules 2013, 46, 9587.
[27] L. Wang, L. Yin, C. Ji, Y. Li, Dyes and Pigments 2015, 118, 3744.
[28] C. B. Nielsen, A. J. P. White, I McCulloch, J. Org. Chem. 2015, 80, 5045.
[29] S. K. Putria, M. S. Leea, D. W. Changa, J. H. Kimb, Synth Met, 2016, 220, 455.
[30] A. C. Stuart, J. R. Tumbleston, H. Zhou, W. Li, S. Liu, H. Ade, W. You, J. Am. Chem. Soc. 2013, 135, 1806.
[31] J. Kim, M. H. Yun, G.-H. Kim, J. Lee, S. M. Lee, S. -J. Ko, Y. Kim, G. K. Dutta, M. Moon, S. Y. Park, D. S. Kim, J, Y, Kim, C. Yang, ACS Appl. Mater. Interfaces 2014, 6, 7523.
[32] Zhao, Z.; Deng, C.; Chen, S.; Lam, J. W. Y.; Qin, W.; Lu, P.; Wang, Z.; Kwok, Z.; Ma, Y.; Qiu, H.; Tang, B. Z. Chem. Commun. 2011, 47, 8847.
[33] Feng, G.; Tay, C. Y.; Chui, Q. X.; Liu, R.; Tomczak, N.; Liu, J.; Tang, B. Z.; Leong, D. T.; Liu, B. Biomaterials. 2014, 35, 8669.
[34] Jadhav, T.; Dhokale, B.; Patil, Y.; Mobin, S. M.; Misra, R. J. Phy. Chem. C 2016, 120, 24030.
[35] Dou, C.; Chen, D.; Iqbal, J.; Yuan, Y.; Zhang, H.; Wang, Y. Langmuir 2011, 27, 6323.
[36] Jadhav, T.; Dhokale, B.; Misra, R. J. Mater. Chem. C, 2015, 3, 9063.
[37] Cho, N.; Song, K.; Lee, J. K.; Ko, J. Chem. Eur. J. 2012, 18, 11433.
[38] Hong, D. J.; Lee, E.; Jeong, H.; Lee, J. K.; Zin, W. C.; Nguyen, T. D.; Glotzer, S. C.; Lee, M. Angew. Chem. Int. Ed. 2009, 48, 1664.
[39] Chen, S.; Li, Y.; Yang, W.; Chen, N.; Liu, H.; Li, Y. J. Phys. Chem. C 2010, 114, 15109.
[40] Hu, R.; Lager, E.; Aguilar-Aguila, A.; Liu, J.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Zhong, Y.; Wong, K. S.; Pena-Cabrera, E.; Tang, B. Z. J. Phys. Chem. C 2009, 113, 15845.
[41] Qin, Z.; Wang, T.; Lu, X.; Chen, Y.; Peng, J.; Zhou, G. Chem. Asian J. 2016, 11, 285.

無法下載圖示 全文公開日期 2023/01/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE