簡易檢索 / 詳目顯示

研究生: 黃昭順
Huang-chao shuen
論文名稱: 銅系觸媒氣相合成碳酸二甲酯之研究
Vapor-phase Synthesis of Dimethyl Carbonate by Copper Catalysts
指導教授: 劉端祺
Tuan-Chi Liu
口試委員: 吳紀聖
Wu chi sheng
蕭敬業
none
陳郁文
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 108
中文關鍵詞: 碳酸二甲酯一氧化碳銅觸媒銅鈀觸媒
外文關鍵詞: Dimethyl Carbonate, CuCl2/AC, CuCl2-PdCl2/AC, Carbon monoxide
相關次數: 點閱:204下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究旨在探討CuCl2/C和CuCl2-PdCl2/C兩觸媒的甲醇加氧羰基化的活性,反應是在一個的連續流動的微型反應器中進行,壓力為常壓,主要反應溫度為160℃,進料中有CH3OH、CO、及O2,目標產物為碳酸二甲酯。
實驗的結果顯示,CuCl2/C為具甲醇加氧羰基化活性之觸媒,CuCl2的含量在14.0wt%時觸媒的活性最高。氯化鈀(PdCl2)有活性促進的效果,添加於CuCl2/C可增加其的活性,碳酸二甲酯的選擇率也可因而提高,最佳的氯化鈀添加量為0.5 wt%,過量的添加反而造觸媒活性的下降。
反應的產率與進料的組成有關,達到最大產率的最佳進料組成與所使用的觸媒有關,在固定O2於8%之引爆安全濃度下,10%CuCl2/C觸媒的最佳CH3OH/CO進料比為1:12,在此進料比下,可在40%甲醇轉化率下,達到87%的碳酸二甲酯選擇率;以CuCl2(10%)-PdCl2(0.5%)/C為觸媒時,在相同的反應條件下,最佳的CH3OH/CO進料比為1:6.6,在此進料比下,可在38%甲醇轉化率下,達到95%的碳酸二甲酯選擇率。
CuCl2/C及CuCl2-PdCl2/C觸媒在反應時皆有失活現象,前者較嚴重,由XRD的實驗結果發現,反應後的CuCl2/C觸媒中有多種含二價銅的結晶物出現,但是在反應後的CuCl2-PdCl2/C觸媒中並沒有發現類似的情形,說明了CuCl2/C較易失活的原因,而添加PdCl2有防止銅聚集的作用。另於ESCA的分析結果發現,觸媒上的銅,在反應前後皆為二價,氯含量則大幅減少,EDX實驗結果也證實有此現象,所以觸媒活性衰退應是與銅晶體的成長及氯的流失有關。


Abstract

The aim of this investigation is to examine the activities of CuCl2/C and CuCl2-PdCl2/C catalysts in the oxidative carbonylation of methanol. The reactions were carried out in a continuous flow micro-reactor under atmospheric pressure and at 160C. The feed contained methanol, carbon monoxide and oxygen. The desired product was dimethyl carbonate.
The experimental results show that both CuCl2/C and CuCl2-PdCl2/C are active for the reaction. The most active CuCl2/C catalyst contains 14 wt% CuCl2. The activity of CuCl2/C may be enhanced by the incorpo-
ration of palladium chloride. The incorporation increases not only the activity of the catalyst but also the selectivity of dimethyl carbonate. The optimum amount of palladium chloride in CuCl2-PdCl2/C catalyst is 0.5 wt%. Excess amount of the chloride will only make the catalyst less active.
The yield of dimethyl carbonate in the reaction is related to the feed composition. The optimum feed composition for maximum yield depends on the catalyst used. With the oxygen contain being limited to 8% to avoid explosion, the optimum feed ratio of CO/CH3OH for 10% CuCl2/C is 12. Under the ratio, the reaction may have 40% methanol conversion and 87% dimethyl carbonate selectivity. When CuCl2-PdCl2/C is used as the catalyst, the optimum ratio becomes 6.6. The reaction under the ratio may have 38% conversion and 95% selectivity.
Deactivation was found in either CuCl2/C or CuCl2-PdCl2/C and the situation for CuCl2/C is more severe. The growth of crystalline copper compounds, as found by XRD, during the reaction is one of the causes for the deactivation. CuCl2-PdCl2/C catalyst has less of the crystalline compounds indicating PdCl2 is capable of preventing the growth of the crystals. Both ESCA and EDX analyses have shown that the chlorine content in the catalyst is significantly reduced during the reaction. Therefore, the loss of chlorine may be another reason for the deactivation.

目 錄 中文摘要…………………………………………………………………Ⅰ 英文摘要…………………………………………………………………Ⅱ 誌 謝……………………………………………………………………Ⅳ 目 錄……………………………………………………………………Ⅴ 圖表索引…………………………………………………………………Ⅷ 第一章緒 論………………………..…………………………………1 第二章文獻回顧………………………………………………………6 2.1碳酸二甲酯的合成……………………………………………………6 2.1.1 光氣法…………………………………………………………6 2.1.2 酯交換法………………………………………………………8 2.1.3 羰基化法………………………………………………………9 2.1.4 其它製程………………………………………………………25 2.2 碳酸二甲酯的應用……………………………………………………27 2.2.1 甲基化劑………………………………………………………27 2.2.2 羰基化劑………………………………………………………29 2.2.3其他用途……………………………………………………………34 第三章實 驗……………………………………………………………35 3.1 實驗試料及氣體……………………………………………………35 3.1.1 實驗氣體……………………………………………………………35 3.1.2 實驗藥品………………………………………………………35 3.2 觸媒的製備…………………………………………………………36 3.3甲醇加氧羰基化反應………………………………………………36 3.4 觸媒的鑑定………………………………………………………40 3.4.1 X光繞射分析(XRD)…………………………………………40 3.4.2化學分析電子能譜(ESCA) …………………………………40 3.4.3 EDX分析………………………………………………………42 3.4.4程式升溫脫附(TPD)…………………………………………44 3.4.5 X光吸收光譜之(EXAFS&XANES)……………………………46 3.4.5.1 X光吸收結構邊緣(EXAFS)………………………………47 3.4.5.1延伸X光吸收細微結構(XANES)…………………………………50 3.4.6傅立葉轉換紅外光譜分析(FTIR)………………………………50 第四章結果與討論……………………………………………………52 4.1 碳酸二甲酯之氣相合成反應………………………………………52 4.1.1銅系觸媒的比較………………………………………………52 4.1.2 鍛燒溫度的影響………………………………………………53 4.1.3氯化銅含量的探討………………………………………………55 4.1.4氯化鈀含量的探討………………………………………………57 4.1.5反應溫度的影響…………………………………………………59 4.1.6進料組成對CuCl2/C觸媒的影響…………………………………61 4.1.7進料組成對PdCl2-CuCl2/C觸媒觸媒的影響…………………………63 4.2觸媒的鑑定………………………………………………………………66 4.2.1氨氣程式升溫脫附………………………………………………66 4.2.2反應物程式升溫脫附……………………………………………66 4.2.3 XRD分析…………………………………………………………72 4.2.4 FTIR鑑定…………………………………………………………76 4.2.5化學分析電子能譜(ESCA)分析…………………………………79 4.2.6 EDX分析…………………………………………………………90 4.2.7 (EXAFS&XANES)分析……………………………………………95 4.2.7.1 X光吸收結構邊緣(XANES)……………………………………95 4.2.7.1延伸X光吸收細微結構(EXAFS)……………………………………98 第五章結 論……………………………………………………………101 參考文獻……………………………………………………………………102

1.Boehm, H. P., in Advances in Catalysis, vol. 16, Academic Press, N. Y. p179 (1966).
2.Cao, Y., P. Yang, C. Z. Yao, and W. L. Feng, “Impact of preparation strategy on the properties of carbon-supported Wacker-type catalysts in vapor-phase dimethyl carbonate synthesis” Appl. Catal. A: General 272,p15-22(2004).
3.Cavinato, G. and L. Toniolo, “New aspects of the synthesis of dimethyl carbonate via carbonylation of methyl alcohol promoted by methoxycarbonyl complexes of palladium(Ⅱ)” J. Org. Chem 444, pC65-C66 (1993).
4.Cella, J. A. and S. W. Bacon, “Preparation of Dialkyl Carbonates via the Phase-Transfer-Catalyzed Alkylation of Alkali Metal Carbonate and Bicarbonate Salts” J. Org. Chem. 49, p1122-1125 (1984).
5.Chin, C. S., D. Shin, G. Won, J. Ryu, H. S. Kim, and B. G. Lee, “The effects of catalytic production of dimethyl carbonate” J. Mol. Catal. A: Chemical 160, p315-321 (2000).
6.Chin, Y. R. and N. F. Shin, “Dimethyl carbonate from methanol by non-phosgenation processes” SRI Int. PEP Review No.87-1-4 (1988)
7.Cipris, D. and I. L. Mador, “Electrochemical synthesis of organic carbonates” U. S. Patent 4131521 (1978).
8.Colquhoun, H. M., D. J. Thompson and M. V. Twigg, “Carbonylation: Direct Synthesis of Carbonyl Compounds” Plenum Press, N. Y. (1991).
9.Cullity, B. D., in Directions of Diffracted Beams, Elements of x-ray diffraction, p105 (1978).
10.Curnutt, G. L. and A. D. Harley, “Copper Catalyzed Oxidative Carbonylation of Methanol to Dimethyl Carbonate” Oxygen Complexes and Oxygen Activation by Transition Metals Plenum Press•New York and London p215-232 (1987).

QR CODE