簡易檢索 / 詳目顯示

研究生: 施伯勳
Po-Hsun Shih
論文名稱: 人工揀貨系統之儲位指派研究
A Study of storage location assignment problem for multi-picker manual order-picking systems.
指導教授: 潘昭賢
Jason Chao-Hsien Pan
口試委員: 林義貴
Yi-Kuei Lin
歐陽超
Chao Ou-Yang
陳鴻基
Houn-Gee Chen
王瑞琛
Reay-Chen Wang
張聖麟
Sheng-Lin Chang
鐘崑仁
Kun-Jen Chung
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 52
中文關鍵詞: 揀貨作業儲位指派
外文關鍵詞: order picking, storage assignment
相關次數: 點閱:216下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

揀貨作業是物流中心內耗用資源最多的作業活動之一,因此過去的研究無不致力於提升揀貨作業的效率。傳統上評估揀貨作業績效是以揀貨距離或揀貨行走時間為標準,其改善活動也是以如何縮短揀貨距離或揀貨行走時間最小化為首要目標。但實務上,多位揀貨員同時進行揀貨作業過程中常會發生的等待或阻塞,揀貨時間必然受到影響,故縮短揀貨距離或揀貨時間最小化,並不一定能得到最佳的揀貨績效。因此本論文提出以訂單完成率(throughput rate)為績效衡量指標來評估揀貨作業績效之分析架構,不同過去的研究是著重在揀貨距離的分析架構。本研究導入等候網路的觀念,建構以訂單完成率之數學分析模型,並且提供求解訂單完成率(throughput rate)的方法。利用相同參數建構模擬揀貨作業環境,模擬系統所得到訂單完成率與數學模型計算訂單完成率差異很小,因此證明本研究提出的數學分析模型具備良好估計能力。再進一步由訂單完成率的數學模型,探討訂單完成率與通道服務率之關係,發展新的啟發式儲位指派法則。本研究提出的儲位指派法則可經由設定通道之間服務率比例來進行品項指派,使得揀貨作業之訂單完成率最大化。
本論文旨在針對多揀貨員之人工揀貨作業下,提出績效評估數學模型及提昇揀貨績效之啟發式儲位指派法。第一章說明研究動機與目的。第二章相關文獻探討。第三章探討本研究倉儲環境及分析揀貨作業問題。第四章導入等候觀念,發展訂單完成率數學模型,並且求解訂單完成率(throughput rate)。接著發展啟發式儲位指派法。第五章運用3D模擬技術驗證揀貨作業之數學分析模型及啟發式儲位指派法之比較。第六章總結並說明未來發展方向。


This study investigates an order picking system involving multiple pickers in a warehouse. Travel distance or travel time has usually been employed to measure order-picking efficiency, since most previous studies assumed an order picking system only undertakes single picker operations. However, multiple pickers frequently work in the same area concurrently in an actual warehouse system and congestion inevitably takes place and the traditional travel distance or travel time might not be a proper measure for the system efficiency. Consequently, this study proposes a throughput model for the determination of the picking operation performance for such multiple-picker environment to consider a trade-off between the picking distance and the blocking-caused delay for the storage assignment. The proposed model is first validated by a simulation experiment and then used to compare the throughput of the warehouse under two popular storage assignment strategies with different demand distributions of stock keep units in the order picking system.
The study developed a storage assignment heuristic. The objective of heuristic is to maximize throughput rate of order picking system. The study compares the throughput rare for different storage assignment policies and demand skewness. The results show that the heuristic policy is better than another storage assignment policy.

博士學位論文指導教授推薦書 博士學位考試委員會審定書 中文摘要 ABSTRACT 目 錄 符號索引 第一章 緒論 1.1研究動機與目的 1.2論文架構 第二章 文獻探討 2.1揀貨作業之相關文獻 2.2儲位指派之相關文獻 2.3績效評估之相關文獻 2.4等候網路之相關文獻 第三章 倉儲系統 3.1 倉儲環境設計 3.2 問題描述與解析 第四章 模型建構 4.1 計算通道服務率 4.2 訂單完成率數學模型 4.3 求解訂單完成率 4.4 訂單完成率及通道服務率分析 4.4.1 數學模式解析 4.4.2 啟發式儲位指派法 第五章 模擬與評估 5.1 3D模擬系統 5.2 實驗環境說明 5.3 模型驗證 5.4 分析一 5.5 分析二 第六章 結論與未來研究方向 6.1 結論 6.2 未來研究方向 參考文獻

1.潘昭賢和林松毅,「考慮等候時間的儲位指派研究」,國立台灣科技大學管理技術研究所工業管理學程碩士論文,民國87年。
2.潘昭賢和林國傑,「物流中心品項儲位指派之研究」,國立台灣工業技術學院管理技術研究所工業管理學程碩士論文,民國86年。
3.潘昭賢和張壯營,”塔布搜尋法在物流中心品項儲位指派問題之研究”,台灣科技大學管理技術研究所工業管理學程碩士論文,民國87年。
4.經濟部商業司,物流中心系統化的佈置與規劃,民國86年。
5.Barrett, B. G., “An Empirical of high-rise warehouse policies for operator-controlled stacker cranes,” Interfaces, Vol.8, No.1, pp.46-49 (1977).
6.Berg, J. P. V. D., and W. H. M. Zijm, “Models for warehouse management: Classification and examples,” International Journal of Production Economics, Vol. 59, No. 1-3, pp.519-528(1999).
7.Buzen, J. P., “Fundamental operational laws of compuer system performance,” Acta Informatica, Vol. 7, pp. 167-182(1976).
8.Caron, F., G. Marchet, and A. Perego, “Routing polices and COI-based storage policies in picker-to-part systems,” International Journal of Production Research, Vol. 36, pp.713-732(1998).
9.Caron, F., G. Marchet, and A. Perego,”Layout design in manual picking system: a simulation approach,” Integrated Manufacturing Systems, Vol. 11, pp. 94-104(2000a).
10.Caron, F., G. Marchet, and A. Perego,”Optimal layout in low-level picker-to-part system,” International Journal of Production Research, Vol.38, pp.101-117(2000b).
11.Chew, E.P., and L.C. Tang, “Travel time analysis for general item location assignment in a rectangular warehouse,” European Journal of Operational Research, Vol.112, pp.582-597 (1999).
12.De Koster, R., T. Le-Due, and K.J. Roodbergen, “Design and control of warehouse order picking: A literature review,” European Journal of Operational Research, Vol.182, pp.481-501 (2007).
13.DeKker, R., R. de Koster, H. van Kalleveen, and K.J. Roodbergen, “Improving order-picking response time at Ankor’s warehouse,” Inerfaces, Vol.34, No.4, pp.303-313(2004).
14.Drury, J., “Towards more efficient order picking. IMM monograph, No. 1,” The Institute of Materials Managements, Cranfield, UK (1988).
15.Elsayed, E. A., and Stern, R. G., “Computerized algorithms for order processing in automated warehousing systems,” International Journal of Production Research, Vol. 21, No. 4, pp. 579-586 (1983).
16.Flexsim, Flexsim simulation software user guide 4, Flexsim Software Products, Inc (2007).
17.Frazelle, E. A., and G. P. Sharp, “Correlated assignment strategy can improve any order picking operation,” Industrial Engineering, pp.33-37 (1989).
18.Frazelle, E.H., World-class warehousing and Material Handling, McGraw Hill, NY (2002).
19.Hausman, W. H., L. B. Schwarz, and S. C. Graves, “Optimal storage assignment in automatic warehousing systems,” Management Science, Vol.22, No.6, pp. 629-638 (1976).
20.Heskett, J.L., “Cube-per-order index: a key to warehouse stock location,” Transportation and distribution Management, Vol. 3, pp.27-31(1963).
21.Hillier, F. S., and R. W. Boling, “Finite Queues in Series with Exponential or Erlang service times – a numerical approach,” Operations Research, Vol.15, pp.286-303 (1967).
22.Hillier, F. S., and R. W. Lieberman, Introduction to Operation Research, Oakland, Calif: Holden-Day.
23.Hwang, H. S., and G. S. Cho, “A performance evaluation model for order picking warehouse design,” Computers & Industial Engineering, Vol.51, pp.335-342 (2006).
24.Hwang, H., , W. Bake and M. K. Lee, “Clustering algorithms for order picking in an automated storage and retrieval systems,” International Journal of Production Research, Vol. 26, No. 2, pp.189-201(1988).
25.Hwang, H., Y. H. Oh, and C. N. Cha, “A stock location rule for a low level picker-to-part system,” Engineering Optimization, Vol.35, pp.285-295 (2003).
26.Hwang, H., Y. H. Oh., and Y. K. Lee,.“An evaluation of routing policies for order-picking operations in low-level picker-to-part system,”. International Journal of Production Research, Vol.42, No.18, pp.3873-3889(2004).
27.Jane, C. C., and Y. W. Laih, “A clustering algorithm for item assignment in a synchronized zone order picking system,” European Journal of Operational Research, Vol.166, pp.489-496(2005).
28.Jarvis, J.M., and E.D. Mcdowell, “Optimal product layout in an order picking warehouse,” IIE Transactions, Vol.23, No.1, pp.93-102(1991).
29.Le-Duc, T., and R. de Koster, “Travel distance estimated and storage zone optimization in a 2-block class-based storage strategy warehouse,” International Journal of Production Research, Vol.43, No.17, pp.3561-3581 (2005).
30.Maloney, D., “Seeing the light,” Modern Material Handle, Vol.55, No.9, pp.49-53(2000).
31.Mulcahy, D.E., Warehouse Distribution and operations handbook, McGraw Hill, N.Y. (1994).
32.Pan, C. H., and S. Y. Liu, “A comparative study of order batching algorithms,” Omega, Vol.23, No.6, pp.691-700(1995).
33.Perros, H. G., “A symmetrical exponential open queue network with blocking and feedback,” IEEE Transcations on Software Engineering, SE-7, pp.395-402(1981).
34.Perros, H. G., and T. Altiok, “Approximate analysis of open networks of queues with blocking: Tandem configurations,” IEEE Transcations on Software Engineering, SE-12/3, pp.450-460(1986).
35.Petersen II, C. G., and R. W. Schmenner, “An evaluation of routing and volume-based storage policies in an order picking operation,” Decision Sciences, Vol.30, No. 2, pp.481-501(1999).
36.Petersen, C. G., G. Aase, and D. Heiser, “Improving order-picking performance through the implementation of class-based storage,” International Journal of Physical Distribution & Logistics Management, Vol.34, No.7, pp.534-544(2004).
37.Petersen, C.G., and G. Aase, “A comparison of picking, storage, and routing policies in manual order picking,” International Jouranal of Production Economics, Vol.92, pp.11-19(2004).
38.Pulat, P. S., and B. M. Pulat, “Throughput analysis in an automated material handling system,” Simulation, Vol.52, pp.195-198(1989).
39.Roodbergen, K. J., and R. D. Koster, “Routing order pickers in a warehouse with a middle aisle,” European Journal of Operational Research, Vol. 133, No. 1, pp.32-43(2001).
40.Rosenblatt, M. J., and A. Eynan, “Deriving the optimal bounders for class-based automatic storage/retrieval systems,” Management Science, Vol. 35, No. 12, pp.1519-1524(1989).
41.Rosenwein, M. B., “An application of cluster analysis to the problem of locating items within a warehouse,” IIE Transactions, Vol.26, No.1, pp.101-103(1994).
42.Ruben, R.A., and F. R. Jacobs, “Batch construction heuristics and storage assignment strategies for walk/ride and pick systems,” Management Science, Vol.45, pp.575-596(1999).
43.Sahni, S., and T. L. Gonzalez, “P-complete approximation problems,” Journal of the Association of Computing Machinery, Vol.23, pp.555-565(1976).
44.Takahashi, Y., H. Miyahara, and T. Hasegawn, “An approximation method for open restricted networks,” Operations Research, Vol.28, pp.594-602(1980).
45.Tang, L. C., and E. K. Chew, “Order picking system: Batching and storage assignment strategies,” Computers & Industrial Engineering, Vol.33, pp.817-820(1997).
46.Yoon, C. S., and G. P. Sharp, “A structured procedure for analysis and design of order pick systems,” IIE Transactions, Vol. 28, pp. 379-389(1996).

QR CODE