簡易檢索 / 詳目顯示

研究生: 廖孝淳
Siao-Chun Liao
論文名稱: 有機添加劑作為抑制水系電池鋁箔集流體腐蝕之研究
Developing organic additives as corrosion inhibitors for aluminum current collector in aqueous batteries
指導教授: 蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
吳溪煌
She-Huang Wu
口試委員: 黃炳照
Bing-Joe Hwang
吳溪煌
She-Huang Wu
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 104
中文關鍵詞: 鋁集流體腐蝕水系電解液有機抑制劑添加劑
外文關鍵詞: Aluminum current collector, corrosion, aqueous electrolyte, organic inhibitor, additive
相關次數: 點閱:176下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

水系電池(Aqueous Batteries, ABs)具有成本低、安全、環保、易組裝、離子電導率高等優點。在水系電解液中,大多採用鈦、不銹鋼、鎳等具有電化學穩定性材料作為集流體。這些昂貴的材料作為集流體限制了水系電池於大型儲能系統的應用。然而,商業化的鋁箔集流體在水溶液環境中容易有腐蝕的問題,因此,抑制鋁箔的腐蝕是關鍵因素。在本研究中,為了改善鋁箔集流體於水系電解液中腐蝕的問題,我們使用了對環境友善且低成本的含氮有機物苯並咪唑(Benzimidazole, BI)和苯並三唑(Benzotriazole, BTA)作為腐蝕抑制劑,在添加劑效能的評估中,SEM鋁箔表面分析可以看到經過線性極化後的鋁箔表面腐蝕產物和孔蝕得到了顯著的抑制。X射線光電子能譜結果證實鋁箔表面的天然氧化層逐漸的氧化為氫氧化物,因其耐腐蝕性較差會進一步腐蝕為Al3+並溶在電解液中。在Zn/LFP水系雙離子電池以兩種方法 ― 添加劑加於電解液中以及混合於正極材料中。兩種添加方法其循環後的鋁箔集流體經由EDS元素分析證實鋁含量較高,氧含量減少,說明皆有抑制腐蝕的效果。Zn/LFP水系雙離子電池以0.2C-rate充放電速率下,將添加劑混合於電極之中有較佳的電化學表現,推測能夠降低添加劑對於鋅陽極的副反應。在50圈循環後原來的LFP電容量保持率為81%,分別混合BI和BTA添加劑為91.87%和74.85%,BI添加劑明顯改善電池的電化學性能並且有較好的穩定性。在使用環保且低成本的含氮有機抑制劑來提昇水性電池集流體的耐蝕,是邁向低成本和安全儲能應用的重要一步。


Aqueous batteries (ABs) are low cost, safe, environmentally friendly, easy to assemble, highly ionic conductive. Among the aqueous electrolyte, most use titanium, stainless steel, and nickel as the current collector because of the electrochemical stability in the aqueous electrolyte. However, the cost limits to commercialize ABs for large energy storage. Commercial current collector, aluminum, is prone to corrosion in an aqueous environment; therefore, the inhibition of aluminum corrosion is a key factor. Here, we introduce eco-friendly and low-cost nitrogen-contained organic inhibitors, benzimidazole (BI) and benzoitriazole (BTA), to solve corrosion. The SEM shows that corrosion products and pitting on Al current collector are significantly inhibited after cycling in both methods to evaluate the additive effects. X-ray photoelectron spectroscopy results confirmed that the passivating oxide film on the aluminum surface was gradually degraded into hydroxide, which is less corrosion resistance and further corroded into Al3+ in the electrolyte. Two methods have been considered and implemented in the aqueous Zn/LFP batteries― additives present in the electrolyte and mixed with cathode material. EDS elemental analysis confirms that the aluminum content increased and the oxygen content decreased from the cycled aluminum current collector in both methods, indicating that the additives have the effect of inhibiting corrosion. The better electrochemical performance is obtained by mixing the additives with cathode material, which may be attributed to the reduction of additives side reaction with Zn anode. The capacity retention of pristine LFP is 81%, BI and BTA additive capacity retention are 91.87% and 74.85% after 50 cycles at 0.2C-rate, respectively. The use of eco-friendly and low-cost nitrogen-containing organic inhibitors for corrosion-resistant current collectors for aqueous batteries marks an important step toward low-cost and safe energy storage applications.

摘要 I ABSTRACT II 致謝 IV 目錄 VI 圖目錄 IX 表目錄 XV 第 1 章 緒論 1 1.1 鋰離子電池介紹 1 1.2 水系電池 2 1.2.1 水系鋰離子電池 2 1.2.2 水系雙離子電池 3 第 2 章 文獻回顧 4 2.1 水系電解液之挑戰 4 2.1.1 調整pH值 5 2.1.2 去除溶氧 6 2.2 高濃度水系電解液 7 2.3 鋁箔集流體於水系電解液應用 16 2.4 研究動機與目的 19 第 3 章 實驗方法及實驗儀器 20 3.1 實驗設備 20 3.2 實驗藥品 21 3.3 實驗步驟 21 3.3.1 添加劑溶劑配置 21 3.3.2 電解液配置 22 3.3.3 三極式電化學腐蝕槽組裝 22 3.3.4 鈕扣型電池組裝 24 3.4 材料結構及特性鑑定 25 3.4.1 X-ray繞射分析儀(XRD) 25 3.4.2 場發射掃描式電子顯微鏡(FE-SEM) 26 3.4.3 傅立葉轉換紅外線光譜(FTIR) 26 3.4.4 高解析光電子能譜儀(XPS) 27 3.5 電化學特性分析 27 3.5.1 電池電化學效能特性測試 27 3.5.2 腐蝕電流及腐蝕電位 27 第 4 章 開發抑制鋁箔腐蝕之添加劑 29 4.1 抑制鋁箔腐蝕添加劑之平台建立 29 4.2 添加劑特性分析 31 4.2.1 低濃度電解液添加劑電化學特性分析 31 4.2.2 高濃度電解液添加劑電化學特性分析 37 4.2.3 添加劑抑制鋁箔腐蝕效能討論 41 4.3 鋁箔表面形貌分析 42 4.3.1 SEM鋁箔表面型態分析 42 4.3.2 XPS鋁箔表面鑑定分析 44 4.4 腐蝕機制之討論 46 第 5 章 水系雙離子電池電化學性能分析 49 5.1 添加劑直接添加於高濃度電解液 51 5.1.1 鋁箔表面形貌分析 54 5.2 添加劑修飾電極搭配高濃度電解液 58 5.2.1 添加劑修飾電極材料結構分析 59 5.2.2 添加劑修飾電極搭配高濃度電解液電化學性能分析 60 5.2.3 電池循環後鋁箔集流體形貌分析 64 5.3 其他副反應 67 5.3.1 鋅負極 68 5.3.2 LFP正極 73 5.3.3 小結 74 第 6 章 結論 77 第 7 章 未來展望 79 參考文獻 80

1. Liang, Y.; Zhao, C. Z.; Yuan, H.; Chen, Y.; Zhang, W.; Huang, J. Q.; Yu, D.; Liu, Y.; Titirici, M. M.; Chueh, Y. L., A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1 (1), 6-32.
2. Whittingham, M. S., Electrical energy storage and intercalation chemistry. Science 1976, 192 (4244), 1126-1127.
3. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
4. Goodenough, J. B., How we made the Li-ion rechargeable battery. Nature Electronics 2018, 1 (3), 204-204.
5. Tang, W.; Zhu, Y.; Hou, Y.; Liu, L.; Wu, Y.; Loh, K. P.; Zhang, H.; Zhu, K., Aqueous rechargeable lithium batteries as an energy storage system of superfast charging. Energy & environmental science 2013, 6 (7), 2093-2104.
6. Li, W.; Dahn, J. R.; Wainwright, D. S., Rechargeable lithium batteries with aqueous electrolytes. Science 1994, 264 (5162), 1115-1118.
7. Yan, J.; Wang, J.; Liu, H.; Bakenov, Z.; Gosselink, D.; Chen, P., Rechargeable hybrid aqueous batteries. Journal of Power Sources 2012, 216, 222-226.
8. Ao, H.; Zhao, Y.; Zhou, J.; Cai, W.; Zhang, X.; Zhu, Y.; Qian, Y., Rechargeable aqueous hybrid ion batteries: Developments and prospects. Journal of Materials Chemistry A 2019, 7 (32), 18708-18734.
9. Zhang, H.; Wu, X.; Yang, T.; Liang, S.; Yang, X., Cooperation behavior between heterogeneous cations in hybrid batteries. Chemical Communications 2013, 49 (85), 9977-9979.
10. Wang, H.; Tan, R.; Yang, Z.; Feng, Y.; Duan, X.; Ma, J., Stabilization perspective on metal anodes for aqueous batteries. Advanced Energy Materials 2021, 11 (2), 2000962.
11. Liu, Z.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X.; Huang, Z.; Zhi, C., Voltage issue of aqueous rechargeable metal-ion batteries. Chemical Society Reviews 2020, 49 (1), 180-232.
12. Pei, W.; Hui, Y.; Huaquan, Y., Electrochemical behavior of Li Mn spinel electrode material in aqueous solution. Journal of power sources 1996, 63 (2), 275-278.
13. Wang, Y.-g.; Lou, J.-y.; Wu, W.; Wang, C.-x.; Xia, Y.-y., Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium-Ion Intercalated Compounds: III. Capacity Fading Mechanism of at Different pH Electrolyte Solutions. Journal of the Electrochemical Society 2007, 154 (3), A228.
14. Luo, J.-Y.; Cui, W.-J.; He, P.; Xia, Y.-Y., Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nature chemistry 2010, 2 (9), 760-765.
15. Zhao, M.; Zhang, B.; Huang, G.; Zhang, H.; Song, X., Excellent rate capabilities of (LiFePO4/C)//LiV3O8 in an optimized aqueous solution electrolyte. Journal of power sources 2013, 232, 181-186.
16. Hou, Z.; Zhang, X.; Li, X.; Zhu, Y.; Liang, J.; Qian, Y., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. Journal of Materials Chemistry A 2017, 5 (2), 730-738.
17. Guo, Z.; Zhao, Y.; Ding, Y.; Dong, X.; Chen, L.; Cao, J.; Wang, C.; Xia, Y.; Peng, H.; Wang, Y., Multi-functional flexible aqueous sodium-ion batteries with high safety. Chem 2017, 3 (2), 348-362.
18. Wessells, C.; Ruffο, R.; Huggins, R. A.; Cui, Y., Investigations of the electrochemical stability of aqueous electrolytes for lithium battery applications. Electrochemical and Solid State Letters 2010, 13 (5), A59.
19. Yokoyama, Y.; Fukutsuka, T.; Miyazaki, K.; Abe, T., Origin of the electrochemical stability of aqueous concentrated electrolyte solutions. Journal of the Electrochemical Society 2018, 165 (14), A3299.
20. Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350 (6263), 938-943.
21. Xu, K., Electrolytes and interphases in Li-ion batteries and beyond. Chemical reviews 2014, 114 (23), 11503-11618.
22. Wang, F.; Lin, Y.; Suo, L.; Fan, X.; Gao, T.; Yang, C.; Han, F.; Qi, Y.; Xu, K.; Wang, C., Stabilizing high voltage LiCoO 2 cathode in aqueous electrolyte with interphase-forming additive. Energy & Environmental Science 2016, 9 (12), 3666-3673.
23. Suo, L.; Borodin, O.; Sun, W.; Fan, X.; Yang, C.; Wang, F.; Gao, T.; Ma, Z.; Schroeder, M.; von Cresce, A., Advanced high‐voltage aqueous lithium‐ion battery enabled by “water‐in‐bisalt” electrolyte. Angewandte Chemie 2016, 128 (25), 7252-7257.
24. Yamada, Y.; Usui, K.; Sodeyama, K.; Ko, S.; Tateyama, Y.; Yamada, A., Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nature Energy 2016, 1 (10), 1-9.
25. Yang, C.; Ji, X.; Fan, X.; Gao, T.; Suo, L.; Wang, F.; Sun, W.; Chen, J.; Chen, L.; Han, F., Flexible aqueous Li‐ion battery with high energy and power densities. Advanced materials 2017, 29 (44), 1701972.
26. Yang, C.; Chen, J.; Qing, T.; Fan, X.; Sun, W.; von Cresce, A.; Ding, M. S.; Borodin, O.; Vatamanu, J.; Schroeder, M. A., 4.0 V aqueous Li-ion batteries. Joule 2017, 1 (1), 122-132.
27. Wang, F.; Borodin, O.; Ding, M. S.; Gobet, M.; Vatamanu, J.; Fan, X.; Gao, T.; Eidson, N.; Liang, Y.; Sun, W., Hybrid aqueous/non-aqueous electrolyte for safe and high-energy Li-ion batteries. Joule 2018, 2 (5), 927-937.
28. Kühnel, R.-S.; Reber, D.; Battaglia, C., A high-voltage aqueous electrolyte for sodium-ion batteries. ACS Energy Letters 2017, 2 (9), 2005-2006.
29. Suo, L.; Borodin, O.; Wang, Y.; Rong, X.; Sun, W.; Fan, X.; Xu, S.; Schroeder, M. A.; Cresce, A. V.; Wang, F., “Water‐in‐salt” electrolyte makes aqueous sodium‐ion battery safe, green, and long‐lasting. Advanced Energy Materials 2017, 7 (21), 1701189.
30. Zhang, C.; Holoubek, J.; Wu, X.; Daniyar, A.; Zhu, L.; Chen, C.; Leonard, D. P.; Rodríguez-Pérez, I. A.; Jiang, J.-X.; Fang, C., A ZnCl 2 water-in-salt electrolyte for a reversible Zn metal anode. Chemical communications 2018, 54 (100), 14097-14099.
31. Wu, X.; Xu, Y.; Zhang, C.; Leonard, D. P.; Markir, A.; Lu, J.; Ji, X., Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. Journal of the American Chemical Society 2019, 141 (15), 6338-6344.
32. Chen, H.; Zhang, Z.; Wei, Z.; Chen, G.; Yang, X.; Wang, C.; Du, F., Use of a water-in-salt electrolyte to avoid organic material dissolution and enhance the kinetics of aqueous potassium ion batteries. Sustainable Energy & Fuels 2020, 4 (1), 128-131.
33. Leonard, D. P.; Wei, Z.; Chen, G.; Du, F.; Ji, X., Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Letters 2018, 3 (2), 373-374.
34. Ko, S.; Yamada, Y.; Yamada, A., A 62 m K-ion aqueous electrolyte. Electrochemistry Communications 2020, 116, 106764.
35. Zheng, J.; Tan, G.; Shan, P.; Liu, T.; Hu, J.; Feng, Y.; Yang, L.; Zhang, M.; Chen, Z.; Lin, Y., Understanding thermodynamic and kinetic contributions in expanding the stability window of aqueous electrolytes. Chem 2018, 4 (12), 2872-2882.
36. Lukatskaya, M. R.; Feldblyum, J. I.; Mackanic, D. G.; Lissel, F.; Michels, D. L.; Cui, Y.; Bao, Z., Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy & Environmental Science 2018, 11 (10), 2876-2883.
37. Xie, J.; Liang, Z.; Lu, Y.-C., Molecular crowding electrolytes for high-voltage aqueous batteries. Nature materials 2020, 19 (9), 1006-1011.
38. Zhu, P.; Gastol, D.; Marshall, J.; Sommerville, R.; Goodship, V.; Kendrick, E., A review of current collectors for lithium-ion batteries. Journal of Power Sources 2021, 485, 229321.
39. Li, S.; Church, B. C., Electrochemical stability of aluminum current collector in aqueous rechargeable lithium-ion battery electrolytes. Journal of Applied Electrochemistry 2017, 47 (7), 839-853.
40. Kühnel, R.-S.; Reber, D.; Remhof, A.; Figi, R.; Bleiner, D.; Battaglia, C., “Water-in-salt” electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries. Chemical Communications 2016, 52 (68), 10435-10438.
41. Gheytani, S.; Liang, Y.; Jing, Y.; Xu, J. Q.; Yao, Y., Chromate conversion coated aluminium as a light-weight and corrosion-resistant current collector for aqueous lithium-ion batteries. Journal of Materials Chemistry A 2016, 4 (2), 395-399.
42. Dudley, J.; Wilkinson, D.; Thomas, G.; LeVae, R.; Woo, S.; Blom, H.; Horvath, C.; Juzkow, M.; Denis, B.; Juric, P., Conductivity of electrolytes for rechargeable lithium batteries. Journal of power sources 1991, 35 (1), 59-82.
43. Andersson, A. M.; Herstedt, M.; Bishop, A. G.; Edström, K., The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes. Electrochimica Acta 2002, 47 (12), 1885-1898.
44. Dahbi, M.; Ghamouss, F.; Tran-Van, F.; Lemordant, D.; Anouti, M., Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. Journal of Power Sources 2011, 196 (22), 9743-9750.
45. Bokati, K. S.; Dehghanian, C., Adsorption behavior of 1H-benzotriazole corrosion inhibitor on aluminum alloy 1050, mild steel and copper in artificial seawater. Journal of Environmental Chemical Engineering 2018, 6 (2), 1613-1624.
46. Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V., 8-Hydroxyquinolines: a review of their metal chelating properties and medicinal applications. Drug design, development and therapy 2013, 7, 1157.
47. Yamada, Y.; Chiang, C. H.; Sodeyama, K.; Wang, J.; Tateyama, Y.; Yamada, A., Corrosion prevention mechanism of aluminum metal in superconcentrated electrolytes. ChemElectroChem 2015, 2 (11), 1687-1694.
48. McOwen, D. W.; Seo, D. M.; Borodin, O.; Vatamanu, J.; Boyle, P. D.; Henderson, W. A., Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy & Environmental Science 2014, 7 (1), 416-426.
49. Kovačević, N. a.; Kokalj, A., DFT study of interaction of azoles with Cu (111) and Al (111) surfaces: role of azole nitrogen atoms and dipole–dipole interactions. The Journal of Physical Chemistry C 2011, 115 (49), 24189-24197.
50. Vargel, C., Corrosion of aluminium. Elsevier: 2020.
51. Coustan, L.; Zaghib, K.; Bélanger, D., New insight in the electrochemical behaviour of stainless steel electrode in water-in-salt electrolyte. Journal of Power Sources 2018, 399, 299-303.
52. Ko, S.; Yamada, Y.; Yamada, A., Formation of a Solid Electrolyte Interphase in Hydrate-Melt Electrolytes. ACS applied materials & interfaces 2019, 11 (49), 45554-45560.
53. Yesibolati, N.; Umirov, N.; Koishybay, A.; Omarova, M.; Kurmanbayeva, I.; Zhang, Y.; Zhao, Y.; Bakenov, Z., High performance Zn/LiFePO4 aqueous rechargeable battery for large scale applications. Electrochimica Acta 2015, 152, 505-511.
54. Xiao, D.; Dou, Q.; Zhang, L.; Ma, Y.; Shi, S.; Lei, S.; Yu, H.; Yan, X., Optimization of organic/water hybrid electrolytes for high‐rate carbon‐based supercapacitor. Advanced Functional Materials 2019, 29 (42), 1904136.
55. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society 1997, 144 (4), 1188.
56. Shi, Y.; Wen, L.; Li, F.; Cheng, H.-M., Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries. Journal of Power Sources 2011, 196 (20), 8610-8617.
57. Kosec, T.; Milošev, I.; Pihlar, B., Benzotriazole as an inhibitor of brass corrosion in chloride solution. Applied Surface Science 2007, 253 (22), 8863-8873.
58. Brusic, V.; Frisch, M.; Eldridge, B.; Novak, F.; Kaufman, F.; Rush, B.; Frankel, G., Copper corrosion with and without inhibitors. Journal of the electrochemical society 1991, 138 (8), 2253.
59. Tron, A.; Jo, Y. N.; Oh, S. H.; Park, Y. D.; Mun, J., Surface modification of the LiFePO4 cathode for the aqueous rechargeable lithium ion battery. ACS applied materials & interfaces 2017, 9 (14), 12391-12399.

無法下載圖示 全文公開日期 2024/09/01 (校內網路)
全文公開日期 2024/09/01 (校外網路)
全文公開日期 2024/09/01 (國家圖書館:臺灣博碩士論文系統)
QR CODE