簡易檢索 / 詳目顯示

研究生: 蘇瑞翔
RUEI-SHIANG SU
論文名稱: 鋼筋混凝土短柱受剪破壞之振動台實驗研究
Shake Table Tests on Reinforced Concrete Short Columns Failed in Shear
指導教授: 黃世建
Shyh-Jiann Hwang
林英俊
Ing-Jaung Lin
口試委員: 葉勇凱
Yeong-Kae Yeh
吳俊霖
Chiun-Lin Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 227
中文關鍵詞: 崩塌純剪破壞軸力破壞短柱鋼筋混凝土振動台
外文關鍵詞: collapse, pure shear failure, axial failure, short column, RC, shake table
相關次數: 點閱:279下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於921集集地震,許多老舊校舍之窗台柱發生嚴重之剪力破壞,尤其箍筋量嚴重不足之老舊鋼筋混凝土 (RC) 短柱更容易受損。再者,國際間目前對於短柱純剪破壞之研究成果也很有限,因此本研究擬探討短柱受地震力作用下之純剪破壞行為。
    本研究係探討低軸力作用下RC短柱歷經純剪破壞模式的後挫屈結構行為,以高寬比3與4之短柱(包含韌性及非韌性配筋),分別組合成1座三柱構架及3座雙柱構架試體,此可模擬剪力屋架承受地震力作用時之柱體雙曲率變形行為。並藉由動態倒塌實驗構架系統,觀察雙柱之局部破壞情況與整體構架破壞情形,與三柱構架之軸力分配情況,並與實尺寸單柱試體之反覆載重實驗結果進行交叉比對,以探討動態實驗與靜態實驗中之關連性。在實驗過程中亦可觀察柱桿件剪力強度的衰減與裂縫之變化,並藉由剪力型房屋耐震能力之分析模型,以評估柱桿件之剪力強度與位移能力。
    由實驗結果發現,於三柱構架實驗可發現當非韌性柱之破壞相當嚴重時,其軸力將平均分配於兩側之韌性柱上,而於雙柱系統破壞後立即崩塌,而無軸力重分配之情況,與單柱反覆載重情況相似。而由動態與擬靜態實驗中,可發現動態實驗之剪力強度普遍較高。本研究所採用剪力強度公式之計算結果,均普遍低估,尤其對於非韌性柱之低估較多,其代表短柱抵抗剪力之能力應比我們想像中要強。而位移預估之精確度仍顯不足,亦需再行修正。由本實驗之結果可進一步提供動態模擬行為之參考。


    During Chi-Chi earthquake, many short columns close to window sills in old school buildings were failed by pure shear, and the reinforced concrete (RC) short columns with insufficient stirrups were especially vulnerable. Furthermore, so far international research on columns of pure shear failure is few; therefore, this study discusses the short columns with pure shear failure subjected to earthquake force.
    This study discusses the structure behavior of RC short columns with pure shear failure and member buckled under the low axial load. Short columns (ductile and non-ductile detailing) with span-to-depth ratio including three and four were connected to one frame with three columns and three frames with two columns to simulate shear frames subjected to earthquake force and double-curvature deformation. Based on the system of dynamic collapse experiment, local and global failure can be observed. Load redistribution of frame with three columns and the comparison with results of cyclic load tests of single column study the relationship between cyclic and dynamic tests. Also, the degradation of shear strength of columns and the change of cracks can be observed during experiments. The shear strength and displacement capacity can be evaluated using seismic assessment models for shear type buildings.
    Test results show that after the non-ductile column of frame with three columns damages a lot, the axial load of this column will be distributed into outer ductile columns, but the frame with two columns collapse immediately after one of columns fails, without any redistribution of axial loads, which is similar to the cyclic test of single column. The shear strength of columns in dynamic tests is higher than that in cyclic tests. The predictions of shear strength models adopted in this study underestimates the shear strength of columns, especially for columns with non-ductile detailing, which represents that the shear strength of short column would be stronger than we expect. On the other hand, the accuracy of predictions of displacement is not enough and modification of models must be made. Test results in this study can be helpful in simulating the dynamic collapse behavior.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VII 表目錄 XIII 圖目錄 XV 符號說明 XXV 第一章 1 緒論 1 1.1 研究動機與目的 1 1.2 研究內容與方法 4 第二章 7 文獻回顧與分析模型 7 2.1 柱剪力強度計算 7 2.1.1 美國ACI 318-05規範相關規定 7 2.1.2 軟化壓拉桿模型之應用 10 2.1.3 美國 ASCE-ACI Committee 426 建議 1977 [10] 22 2.1.4 美國加州 SEAOC 1973 [11] 24 2.1.5 美國Aschheim and Moehle 1992 [12] 24 2.1.6 美國Caltrans 1995 [13] 25 2.1.7 日本建築學會(AIJ)之Structural Design Guidelines 1994 [14] 26 2.1.8 美國 Priestley et al. 1994 [15] 27 2.1.9 Kowalski et al. 1997 [16] 28 2.1.10 Konwinski and Konwinski et al. 1996 [16] 29 2.1.11 FEMA-273 1997 [16] 30 2.2 柱桿件位移預測 31 2.2.1 美國ACI 318-05規範相關規定 31 2.2.2 軟化壓拉桿模型之應用 32 2.2.3 柱倒塌行為之研究 44 第三章 49 試驗規劃與執行 49 3.1試體規劃 49 3.2試體設計 50 3.2.1 試體編號方式 51 3.2.2 試體C3D25L100s15 51 3.2.3 試體C2D25L75s5 51 3.2.4 試體C2D25L75s15 52 3.2.5 試體C2D25L100s15 52 3.3試體製作 52 3.3.1 材料準備 52 3.3.2 鋼筋彎製 53 3.3.3 應變計貼佈 53 3.3.4 模板組立 54 3.3.5 預埋管固定 54 3.3.6 試體澆置與養護 54 3.4測試佈置 55 3.4.1 內部量測 55 3.4.1 簡介 55 3.4.2 載重鋼梁組裝 56 3.4.3 側撐鋼架組裝 56 3.4.4 防落鋼梁組裝 57 3.4.5 試體組裝 57 3.5量測系統 58 3.5.1磁環式位移計 58 3.5.2 加速規 58 3.5.3 荷重計 59 3.5.4 量錶位移計 59 3.5.5 應變計 59 3.5.6 拉線式位移計 61 3.5.6 影像位移量測 62 第四章 63 試驗結果 63 4.1 簡介 63 4.2 反曲點位置 63 4.3 實驗數值曲線 64 4.3.1 時間歷時曲線 64 4.3.2 剪力與軸力 65 4.3.3 載重與位移的關係 66 4.3.4 慣性力 69 4.3.5 柱上下端彎矩 70 4.3.6 構架傾覆彎矩 71 4.3.7 P-Δ效應 71 4.3.8 強度衰減 72 4.3.9 混凝土應變 73 4.4 位移量測系統之比較 74 4.5 裂縫發展與破壞模式 75 4.6 構架系統識別 76 第五章 81 分析與討論 81 5.1 強度預測分析 81 5.2 載重位移曲線預測分析 81 5.2.1 第一組測試 82 5.2.2 第二組測試 83 5.2.3 第三組測試 83 5.2.4 第四組測試 83 5.3 實尺寸與縮尺效應之比較 84 5.3.1 韌性長柱 84 5.3.2 非韌性長柱 84 5.3.3 韌性短柱 85 5.3.4 非韌性短柱 85 5.4 動態與擬靜態實驗之比較 85 第六章 87 結論與建議 87 6.1 結論 87 6.2 建議與展望 88 參考文獻 91 表 95 圖 109 附錄 199

    [1]中國土木水利工程學會,「混凝土工程設計規範與解說(土木401-93)」,民國94年。
    [2]翁樸文,「鋼筋混凝土短柱受剪破壞之耐震行為曲線研究」,碩士論文,國立台灣科技大學營建工程系,台北,民國九十六年。
    [3]Hwang, S. J., and Lee, H. J. “Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model,”Journal of Structural Engineering, ASCE, Vol. 128, No. 12, December 2002, pp. 1519-1526.
    [4]ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05),”American Concrete Institute, Farmington Hills, 2005, 430 pp.
    [5]陳穎治,「鋼筋混凝土構件在反覆載重作用下撓剪強度研究」,碩士論文,國立台灣科技大學營建工程系,台北,民國九十三年。
    [6]涂耀賢,「低矮型RC牆暨構架之側向載重位移曲線預測研究」,博士論文,國立台灣科技大學營建工程系,台北,民國94年1月。
    [7]Thurlimann, B., "Torsional Strength of Reinforced and Prestressed Concrete Beams - CEB Approach," Bulletin 113, ACI Publication SP-59, Detroit, Mich., 1979.
    [8]Wallace, J. W.,“BIAX:Revision 1 A Computer Program for the Analysis of Reinforced Concrete and Reinforced Masonry Sections,”Report No. CU/CEE-92/4, Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York, February 1992.
    [9]Schlaich, J.; Schäfer, K; and Jennewein, M., “Toward a Consistent Design of Reinforced Concrete Structures, ”PCI Journal, Vol. 32, No.3, May-June 1987, pp. 74-150..
    [10]ASCE-ACI Committee 426, “Shear Strength of Reinforced Concrete Members,” ACI 426R-74, Reapproved 1980, Chapters 1 to 4, Proceeding, ASCE, Vol. 99, No. ST6, June 1973, pp. 1148-1157.
    [11]SEAOC, “Recommended Lateral Force Requirements and Commentary”, Structural Engineers Association of California, Los Angeles, Calif., 1973.
    [12]Aschheim, M., and Moehle, J. P., “Shear Strength and Deformability of Reinforced Concrete Bridge Columns Subjected to Inelastic Cyclic Displacement”,Report No.UCB/EERC-92/04, Earthquake Engineering Research Center, University of California at Berkeley, March 1992.
    [13]CALTRANS,“Bridge Design Specification”, California Department of Transportation, 1995.
    [14]AIJ, “AIJ Structural Design Guidelines for Reinforced Concrete Buildings, ”Architectural Institute of Japan, 1994.
    [15]Priestley,M.J.N.,R. Verma ,and Y. Xiao,“ Seismic Shear Strength of Reinforced Concrete Columns ”, ASCE Journal of Structural Engineering, Vol.120, No.8, 1994, pp.2310-2329.
    [16]Sezen, H., “Seismic Response and Modeling of Reinforced Concrete Building Columns,” Ph.D. Dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley, 2002.
    [17]FEMA-273: NEHRP Guidelines for the Seismic Rehabilitation of Buildings. Prepared with FEMA funding by ATC and ASCE for the Building Seismic Safety Council. Washington, DC, 1997.
    [18]Lee H. J.; Hwang S. J.; Tsai C. H.; and Hwang J. S., “Seismic Evaluation of Existing Reinforced Concrete Building-Shaking Table Tests and Pushover Analysis,” The 6th Japan-Korea-Taiwan Joint Seminar on Earthquake Engineering for Building Structures (SEEBUS 2004), Taipei, Taiwan, November 2004.
    [19]Moehle, J. P., “Displacement-Based Design of RC Structures Subjected to Earthquakes,” Earthquake Spectra, Vol. 8, 1992, No. 3, pp.403–428.
    [20]Elwood, K., and Moehle, J., “Shake Table Tests on the Axial Load Failure of Reinforced Concrete Columns,” Proceedings, fib symposium, Concrete Structures in Seismic Regions, Athens, 2003.
    [21]Otani S., and Sozen M. A.. Behavior of Multistory Reinforced Concrete Frames during Earthquakes. Structural Research Series, 1972, No. 392, University of Illinois Urbana. 551 pages.
    [22]Elwood, K. J., “Shake Table Tests and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frames”, Ph.D. Dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley, 2003.
    [23]Lehman D. E., and Moehle J. P., “Seismic Performance of Well-confined Concrete Bridge Columns,” PEER-1998/01. Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2000, 316 pp.
    [24]Elwood, K.J., and Moehle, J.P., “Evaluation of Existing Reinforced Concrete Columns”, Proceedings of the Thirteenth World Conference on Earthquake Engineering, Vancouver, BC, Canada, August 2004, 15 pages.
    [25]Elwood, K.J., and Moehle, J. P. “Drift Capacity of Reinforced Concrete Column with Light Transverse Reinforcement,” Earthquake Spectra, Vol. 21, 2005, No. 1, pp. 71-89.
    [26]Elwood, K.J., and Moehle, J. P. “Axial Capacity Model for Shear-Damaged Columns,” ACI Structural Journal, Vol.102, 2005, No. 4, pp. 578-587.
    [27]Zhu L., “Probabilistic Drift Capacity Models for Reinforced Concrete Columns”, MASc Thesis, Department of Civil Engineering, University of British Columbia.”, 2005.
    [28]Zhu, L.; Elwood, K.J.; Haukaas T.; and Gardoni, P., “Application of a Probabilistic Drift Capacity Model for Shear-Critical Columns,” Journal of the American Concrete Institute (ACI), Special Publication, 2005.
    [29]Berry, M., and Eberhard, M., “Practical Performance Model for Bar Buckling”, Journal of Structural Engineering, ASCE, Vol. 131, 2005, No. 7, pp. 1060-1070.
    [30]楊智斌,「新城國中校舍實尺寸柱桿件之耐震測試研究」,碩士論文,國立台灣科技大學營建工程系,台北,民國九十四年。
    [31]行政院公共工程委員會,「公共工程施工綱要規範」,第03315 章自充填混凝土。
    [32]ACI committee 209-II (Subcommittee II chaired by D. E. Branson),“Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures”, ACI-SP27, “Design for the Effects of Creep, Shrinkage and Temperature”, Detroit, 1971, pp. 51-93.
    [33]Crandall S.H. and Mark W.D., Random Vibration in Mechanical Systems, Academic Press Inc., 1963.
    [34]Lesmana, C.,「台灣中小學校舍結構耐震能力評估之研究」,碩士論文,國立台灣科技大學營建工程系,台北,民國九十六年。
    [35]Improved Predictions of Seismic Performance of Existing Concrete Buildings – ASCE/SEI 41, Supplement No. , 2007.

    QR CODE