研究生: |
賴萱 Hsuan Lai |
---|---|
論文名稱: |
藉由不同折射率矽線波導陣列之光束轉向 Beam Steering through Index-Mismatched Silicon Wires-based Emitters |
指導教授: |
徐世祥
Shih-Hsiang Hsu 趙良君 Liang -Chiun Chao |
口試委員: |
何文章
Wen-Jeng Ho 葉秉慧 Ping-Hui Yeh 莊敏宏 Miin-Horng Juang 徐世祥 Shih-Hsiang Hsu |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 電子工程系 Department of Electronic and Computer Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 矽光子 、光學相位陣列 、波束轉向 |
外文關鍵詞: | Silicon Photonics, Optical Phased Array, Beam Steering |
相關次數: | 點閱:679 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在光學感測或掃描元件的開發上,經常會針對光學相位進行探討,有效的相位變化將會使得感測的靈敏度提高與掃描的範圍更廣,對於生醫領域或是光學探測、測距技術上都將會有極大的幫助。生醫感測上,以微環形共振器(Micro Ring Resonator, MRR)之相位的研究相當廣泛,此將會影響待測目標之辨識度,除了將單一環形結構優化,串接環形或改善偏振方式皆為影響靈敏度的關鍵因子。有別於傳統的環形共振器探討共振波長變化,本論文將會藉由觀察ring-down現象來取代龐大且精密的光學頻譜分析儀之需求,探討不同折射率波包干涉之間的相對位移,提出基於矽開發之MRR生物感測,在固定光波導損耗下,空間中高階環降現象將提高靈敏度,以半徑100 μm結構來說,在0.1 μW最小光功率下,靈敏度為642000 nm/RIU,而更高的靈敏度也能在更窄的頻寬以及更小的波導傳播損耗中實現。
於光探測或測距技術(Light Detection and Ranging, LiDAR)中,使用光學相位陣列(Optical Phase Array, OPA)可突顯並實現積體化與快速掃描的優勢,間距縮小將可達較大可視場角(Field Of View, FOV),然而這也導致串擾現象(Crosstalk)發生,因此本論文也將深入的討論FOV與間距(pitch)、通道數等之間的關係,並研究增加矽帶波導來降低波導間的交互耦合,以及如何使用基因法優化來減少Crosstalk。研究中開發了不同pitch之16通道的OPA,同時使用矽帶波導來降低天線之間的串擾,量測後發現矽帶的增添將會微幅提升OPA的可視場角,Side lobe可降低3~4 dB,而主要在基因演算法優化下,透過加入SMSR搭配適應度比對,測量上能夠使pitch較大的元件也擁有穩定的可視場角,pitch較小之元件則能減少side lobe出現。本研究測量出大於60度的水平可視場角,且垂直掃描調變角度達約每奈米0.1025度,水平FWHM達2.16~3.04度,SMSR可達約13~18 dB。
The optical phase is often investigated in developing optical sensing or scanning elements. Effective phase changes will lead to more sensitive sensing and a more comprehensive scanning range, which will significantly help in the biomedical field or optical detection and ranging technology. The Micro Ring Resonator (MRR) phase in biomedical sensing is widely studied, affecting the target's recognition to be measured. In addition to optimizing the single ring structure, connecting rings in series or improving the polarization method is crucial to sensitivity enhancement. Unlike the conventional ring resonators to investigate the resonant wavelength variation, this thesis will replace the need for a large and precise optical spectrum analyzer by observing the ring-down phenomenon to investigate the relative displacement between the interferograms with different refractive indices. The proposed MRR biosensing based on silicon developments will increase the sensitivity at a fixed optical waveguide loss with a high-order ring-down in spatial interference. The sensitivity for a 100 μm radius structure is 642,000 nm/RIU at a minimum optical power of 0.1 μW.
In the Light Detection and Ranging (LiDAR) technology, Optical Phase Array (OPA) can highlight and realize the advantages of integration and fast scanning. The reduced array spacing will achieve a larger Field of View (FoV), but this also leads to the occurrence of Crosstalk. Therefore, this thesis will also discuss the relationship between FOV, pitch, channel number, etc. The investigation is to reduce the cross-coupling and Crosstalk between waveguides by adding silicon ribbon waveguides between an array and genetic optimization during characterization. A 16-channel OPA with different pitches and built with a silicon ribbon waveguide was successfully fabricated. Measurements show that adding the silicon ribbon will slightly improve the viewable field angle of the OPA, and the side lobe can be reduced by 3~4 dB. By adding the SMSR fitness to the genetic algorithm optimization, the measurement can achieve a stable FoV for OPA with a larger pitch and reduce the side lobe for a smaller pitch. In this study, the horizontal FoV is greater than 60 degrees, the vertical FoV is 0.1025 degrees per nanometer, the horizontal FWHM is 2.16~3.04 degrees, and the SMSR is about 13~18 dB.
[1] M. E. Hodgson, J. R. Jensen, J. A. Tullis, K. D. Riordan, and C. M. Archer, “Synergistic use of lidar and color aerial photography for mapping urban parcel imperviousness,” Photogramm Eng. Remote Sens., vol. 69, no. 9, pp. 973-980, 2003.
[2] W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density low-crosstalk waveguide superlattice,” Nat. Commun., vol. 6, no. 7027, 2015.
[3] J. Chen, S. Tian, H. Xu, R. Yue, Y. Sun, and Y. Cui, “Architecture of vehicle trajectories extraction with roadside LiDAR serving connected vehicles,” IEEE Access, vol. 7, pp. 100406-100415, 2019.
[4] M. Himmelsbach, A. Mueller, T. Luttel, and H. J. Wunsche, “LIDAR-based 3D object perception,” Proceedings of 1st international workshop on cognition for technical systems. vol. 1. 2008.
[5] K. V. Acoleyen, W. Bogaerts, J. Jagerska, N. Le Thomas, R. Houdre, and R. J. O. l. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett., vol. 34, Issue 9, pp. 1477-1479, 2009.
[6] C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and lidar,” OSA Technical Digest, Optica Publishing Group, 2018.
[7] S. A. Miller, C. T. Phare, Y. C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, and M. Zadka, “512-element actively steered silicon phased array for low-power LIDAR,” CLEO, 2018.
[8] T. Komljenovic, R. Helkey, L. Coldren, and J. E. J. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Express, vol. 25, Issue 3, pp. 2511-2528, 2017.
[9] D. Kwong, A. Hosseini, J. Covey, X. Xu, Y. Zhang, S. Chakravarty, and R. T. Chen, “Corrugated waveguide-based optical phased array with crosstalk suppression,” IEEE Photon. Technol. Lett., vol. 26, no. 10, 2014.
[10] Y. Liu, Z. Hao, L. Wang, J. Wang, J. Yu, B. Xiong, C. Sun, H. Li, Y. Han, and Y. Luo, “On-chip multi-beam emitting optical phased array for wide-angle LIDAR,” CLEO, 2020.
[11] T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Express, vol. 25, no. 3, pp. 2511-2528, 2017.
[12] D. J. Seo,and H. Y. Ryu, “Accurate simulation of a shallow-etched grating antenna on silicon-on-insulator for optical phased array using finite-difference time-domain methods,” Curr. Opt. Photonics, vol. 3, no. 6, pp. 522-530, 2019.
[13] A. Khavasi, L. Chrostowski, Z. Lu, and R. Bojko, “Significant crosstalk reduction using all-dielectric CMOS-compatible metamaterials,” IEEE Photonics Technol. Lett., vol. 28, no. 24, pp. 2787-2790, 2016.
[14] Y. Yang, Y. Guo, Y. Huang, M. Pu, Y. Wang, X. Ma, X. Li, and X. Luo, “Crosstalk reduction of integrated optical waveguides with nonuniform subwavelength silicon strips,” Sci. Rep., vol. 10, no. 1, pp. 1-8, 2020.
[15] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2,” IEEE J. Quantum Electron, vol. 27, no. 8, pp. 1971-1974, 1991.
[16] H. Morino, T. Maruyama, and K. Iiyama, “Reduction of wavelength dependence of coupling characteristics using Si optical waveguide curved directional coupler,” J. Light. Technol., vol. 32, no. 12, pp. 2188-2192, 2014.
[17] S. Chen, Y. Shi, S. He, and D. Dai, “Low-loss and broadband 2× 2 silicon thermo-optic Mach–Zehnder switch with bent directional couplers,” Opt. Lett., vol. 41, no. 4, pp. 836-839, 2016.
[18] Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photonics J., vol. 8, no. 3, pp. 1-8, 2016.
[19] S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” J. Light. Technol., vol. 23, no. 6, pp. 2103, 2005.
[20] T. Aalto, “Microphotonic silicon waveguide components,” VTT Technical Research Centre of Finland, 2004.
[21] A. Yariv, and P. Yeh, “Photonics: optical electronics in modern communications,” Oxford University Press, 2007.
[22] H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add–drop filter based on silicon grating-assisted contra directional couplers,” Opt. Lett., vol. 38, no. 1, pp. 1-3, 2013.
[23] L. B. Soldano, and E. C. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol., vol. 13, no. 4, pp. 615-627, 1995.
[24] M. Dakss, L. Kuhn, P. Heidrich, and B. Scott, “Errata: Grating Coupler for Efficient Excitation of Optical Guided Waves in Thin Films,” Appl. Phys. Lett., vol. 17, no. 6, pp. 268-268, 1970.
[25] R. Waldhäusl, B. Schnabel, P. Dannberg, E.-B. Kley, A. Bräuer, and W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt., vol. 36, no. 36, pp. 9383-9390, 1997.
[26] J. W. Goodman, “Introduction to Fourier Optics, Roberts & Co,” 2005.
[27] A. Densmore, D. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” IEEE Photonics Technol. Lett., vol. 18, no. 23, pp. 2520-2522, 2006.
[28] G. Nemova, and R. Kashyap, “Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating,” J. Opt. Soc. Am. B, vol. 24, no. 10, p. 2696, 2007.
[29] S. Cho, and N. Jokerst, “A Polymer Microdisk Photonic Sensor Integrated Onto Silicon,” IEEE Photonics Technol. Lett., vol. 18, no. 20, pp. 2096-2098, 2006.
[30] R. Boyd, and J. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt., vol. 40, no. 31, p. 5742, 2001.
[31] C. Chao and L. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett., vol. 83, no. 8, pp. 1527-1529, 2003.
[32] A. Armani, and K. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett., vol. 31, no. 12, p. 1896, 2006.
[33] A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science, vol. 317, no. 5839, pp. 783-787, 2007.
[34] H. Yi, D. Citrin, and Z. Zhou, “Highly sensitive silicon microring sensor with sharp asymmetrical resonance,” Opt. Express, vol. 18, no. 3, pp. 2967, 2010.
[35] D. Dai , and S. He, “Highly-sensitive sensor with large measurement range realized with two cascaded-microring resonators,” Opt. Commun., vol. 279, no. 1, pp. 89-93, 2007.
[36] G. Stewart, K. Atherton, H. Yu, and B. Culshaw. “An investigation of an optical fiber amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol., vol. 12, no. 7, pp. 843, 2001.
[37] Z. Wang, M. Jiang, H. Xu, and R. Du, “New Optical Fiber Micro-Bend Pressure Sensors Based on Fiber-Loop Ringdown,” Procedia Eng., vol. 29, pp. 4234-4238, 2012.
[38] C. Lawson, and R. Michael, “Fiber optic low-coherence interferometry for non-invasive silicon wafer characterization,” J. Cryst. Growth, vol. 137, no. 1-2, pp. 37-40, 1994.
[39] Z. Lu, Y. Han, Y. Wang, Z. Chen, F. Zhang, Jaeger N. A. F., and L. Chrostowski. “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express, vol. 23, no. 3, pp. 3795-3808, 2015.
[40] D. Zhuang, L. Zhagn, X. Han, Y. Li, Y. Li, X. Liu, and J. Song, “Omnidirectional beam steering using aperiodic optical phased array with high error margin,” Opt. Express, vol. 26, no. 15, pp. 19154-19170, 2018.
[41] C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon optical phased array with grating lobe-free beam formation over 180 degree field of view,” OSA Technical Digest, Optica Publishing Group, 2018.
[42] Q. Liu, Y. Lu, B. Wu, P. Jiang, R. Cao, J. Feng, and L. Jin, “Silicon optical phased array side lobe suppression based on an improved genetic algorithm,” ACP and IPOC, 2020.
[43] M. C. Shin, A. Mohanty, K. Watson, G. R. Bhatt, C. T. Phare, S. A. Miller, and M. Lipson, “Chip-scale blue light phased array,” Opt. Lett., vol. 45, no. 7, pp. 1934-1937, 2020.
[44] C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon optical phased array with grating lobe-free beam formation over 180 degree field of view,” OSA Technical Digest, Optica Publishing Group, 2018.
[45] T. Lin, and T. Chu, “Non-uniform optical phased array optimized with genetic algorithm,” OSA Technical Digest, Optica Publishing Group, 2018.
[46] B. Shi, and Q. Luo, “Genetic algorithm in suppression of quantization side-lobes of phased array antenna,” In 2011 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (pp. 83-86).
[47] F. Soltankarimi, J. Nourinia, and C. H. Ghobadi, “Side lobe level optimization in phased array antennas using genetic algorithm,” Eighth IEEE International Symposium on Spread Spectrum Techniques and Applications-Programme and Book of Abstracts, IEEE Cat. No. 04TH8738. IEEE, 2004.
[48] B. Yang, H. Chen, S. Yang, and M. Chen, “An improved aperiodic OPA design based on large antenna spacing,” Opt. Commun., vol. 475, 125852, 2020.
[49] T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Express, vol. 25, no. 3, pp. 2511-2528, 2017.
[50] H. Lai, T. N. Kuo, J. Y. Xu, S. H. Hsu, and Y. C. Hsu, “Sensitivity enhancement of group refractive index biosensor through ring-down interferograms of microring resonator,” Micromachines, 13(6), 922, 2022.
[51] J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express, vol. 19, no. 22, pp. 21595-21604, 2011.
[52] D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett., vol. 39, no. 4, pp. 941-944, 2014.
[53] Y. Zhang, Y. C. Ling, K. Zhang, C. Gentry, D. Sadighi, G. Whaley, J. Colosimo, and P. Suni, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” Opt. Express, vol. 27, no. 3, pp. 1929-1940, 2019.
[54] J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express, vol. 23, no. 5, pp. 5861-5874, 2015.
[55] P. Wang, G. Luo, Y. Li, W. Yang, H. Yu, X. Zhou, Y. Zhang, and J. Pan, “Large scanning range optical phased array with a compact and simple optical antenna,” Microelectron Eng, vol. 224, 111237, 2020.
[56] C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett., vol. 42, no. 20, pp. 4091-4094, 2017.
[57] Y. Li, B. Chen, Q. Na, Q. Xie, M. Tao, L Zhang, Z. Zhi, Y. Li, X. Liu, X. Luo, G. Lo, F. Gao, and X. Li, J. Song, “Wide-steering-angle high-resolution optical phased array,” Photonics Res., vol. 9, no. 12, pp. 2511-2518, 2021.
[58] S. A. Miller, Y. C. Chang, C. T. Phare, M. C. Shin, M. Zadka, S. P. Roberts, B. Stern, X. Ji, A. Mohanty, and O. A. J. Gordillo, “Large-scale optical phased array using a low-power multi-pass silicon photonic platform,” Optica, vol. 7, no. 1, pp. 3-6, 2020.
[59] D. Kwong, A. Hosseini, J. Covey, X. Xu, Y. Zhang, S. Chakravarty, and R. T. Chen, “Corrugated waveguide-based optical phased array with crosstalk suppression,” IEEE Photon. Technol. Lett, vol. 26, no.10, pp. 991-994., 2014.