簡易檢索 / 詳目顯示

研究生: 陳奕㮀
Yi-Han Chen
論文名稱: 自動化塗佈系統開發與低毒性IPA-SiO2輻射冷卻塗層之製備與分析
Development of automated coating system with preparation and characterization of IPA-SiO2 coatings targeting radiative cooling applications
指導教授: 周育任
Yu-Jen Chou
口試委員: 施劭儒
Shao-Ju Shih
游進陽
Chin-Yang Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 77
中文關鍵詞: 輻射冷卻塗層自動化二氧化矽二氧化鈦
外文關鍵詞: Passive radiative cooling coatings, Automation, SiO2, TiO2
相關次數: 點閱:287下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

全球暖化導致冷卻需求持續增加,使用傳統冷卻手段如風扇、空調,除用電量提升外,設備排出之熱空氣亦加劇室外溫度上升,造成惡性循環。若使用被動輻射冷卻作為新興冷卻手段,藉由將熱能透過大氣窗口區域(波長8至13μm)向外太空散發輻射熱,無須消耗能量即可達成冷卻之效果。因此本研究擬利用輻射冷卻機制,盼以低成本之手段,製備輻射冷卻塗層,並提升輻射冷卻效能。實驗將分為三部分:(1) 開發自動化塗佈系統,建立穩定、可大量生產之塗層製程;(2) 了解機台塗佈性能,並開發低毒性、簡易之輻射冷卻塗層;(3) 加入高反射材料TiO2,以提升輻射冷卻塗層性能。各塗層之相關分析將以SEM、LSCM觀察表面形貌及粉體分布均勻度,並以UV-Vis-NIR、FTIR檢驗塗層反射率以及發射率,並且實際進行日曬實驗了解各塗層之降溫效果。結果顯示以0.4μm SiO2粉末、濃度15vol%所製備之IPA- SiO2-塗層可獲得單日最高15.5°C之降溫效果。以濃度10vol%塗佈不同厚度之塗層,以厚度100μm之塗層具有最佳降溫效果,單日最大降溫可達約13.5°C。最後,於漿料中添加高反射材料TiO2,可提升輻射冷卻效果,其中以10vol% SiO2 + 2vol% TiO2之漿料配比可獲得最大降溫13.8°C。本研究之輻射冷卻塗層具厚度可調、穩定生產,並且在實際之日曬實驗,與未塗佈之基板相比,皆有顯著之降溫冷卻效果。


Global warming has led to a continuous increase in cooling demand. Traditional cooling methods such as air conditioners consume more electricity with the discharge of hot air, causing a vicious cycle. As an emerging cooling method, by transferring the radiation into outer space through the atmospheric window, passive radiative cooling could achieve cooling effects without consuming energy. Therefore, this study aims to develop an automated coating system to assist the preparation of radiative cooling coatings and improve their efficiency via radiative cooling mechanisms. The study could be divided into three parts: (1) developing an automated coating system; (2) understanding its capability and developing low-toxicity radiative cooling coatings; and (3) adding reflective material to improve the performance of the radiative cooling coatings. The coatings are characterized using various techniques, such as SEM, LSCM, UV-Vis-NIR, and FTIR, to observe their powder uniformity, surface morphology, reflectance, and emissivity. Sun exposure experiments are conducted to examine the cooling effect. The results showed that the radiative cooling coating of IPA-SiO2 with a concentration of 15vol% could achieve a maximum temperature reduction of 15.5°C. Meanwhile, coatings with different thicknesses with a concentration of 10vol% showed that the coating with a thickness of 100μm had the best cooling effect, with a maximum temperature reduction of 13.5°C. Finally, adding high-reflectance material TiO2 to IPA-SiO2 coatings could improve the radiative cooling effect. With a ratio of 10 vol% SiO2 + 2 vol% TiO2, a maximum temperature reduction of 13.8°C could be achieved. In summary, in this study, we have developed radiative cooling coatings with adjustable thicknesses, and stable production. While significant cooling effects are demonstrated compared to non-coated substrates.

摘要 I Abstract IV 致謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 研究介紹 1 1.1 研究背景 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 輻射冷卻原理 3 2.1.1 輻射冷卻基礎 (Foundation of radiative cooling) 3 2.1.2 太陽輻射(Solar irradiation) 5 2.1.3 大氣輻射 (Atmospheric radiation) 7 2.1.4 發射率 (Emissivity) 8 2.1.5 輻射降溫潛力 (Radiative cooling potential) 9 2.1.6 選擇性輻射冷卻 (Selective radiative cooler) 11 2.2 輻射冷卻發展 (Radiation cooling development) 11 2.2.1 自然界輻射冷卻 (Natural radiators) 12 2.2.2 夜間輻射冷卻 (Passive night-time radiative cooling, PNRC) 12 2.2.3 日間輻射冷卻 (Passive daytime radiative cooling, PDRC) 13 2.2.4 輻射冷卻應用 (Application of radiative cooling) 14 2.3 輻射冷卻材料結構 15 2.3.1 多層結構 (Multilayer structure) 16 2.3.2 超穎材料 (Metamaterial) 17 2.3.3 粉體塗層 (Randomly distributed particle structure) 19 2.3.4 多孔結構 (Porous structure) 20 2.4 輻射冷卻塗層製程 (Raditive cooling flim process) 21 2.4.1 塗層製備方式 21 2.4.2 二氧化矽-聚甲基丙烯酸甲酯塗層 (SiO2-PMMA coating) 21 第三章 實驗方法 23 3.1 實驗流程及實驗設計(Procedure and design of experiment) 23 3.2 實驗使用藥品(Experimental chemicals) 25 3.3 儀器設備(Experimental device) 26 3.3.1 場發射雙束型聚焦離子束顯微鏡(Dual beam focused ion beam scanning electron microscope, FIB-SEM) 27 3.3.2 迴轉式動態流變儀(Modular compact rheometer) 27 3.3.3 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectrometer, FTIR) 28 3.3.4 紫外光/可見光/近紅外光譜儀(UV-Vis-NIR spectrometer) 28 3.3.5 雷射掃描共軛焦顯微鏡(Laser scanning confocal microscopy,LSCM) 29 3.3.6 日曬溫度量測 29 3.3.7 X光繞射分析儀(X-ray diffractometer) 31 3.4 設備研發方法 32 3.4.1 自動化設備開發 (Development of automative coating system) 32 3.4.2 自動化設備組裝 (Experimental device assembling) 33 3.5 塗層製備方法 35 3.5.1 二氧化矽-聚甲基丙烯酸甲酯塗層(DCE-SiO2-PMMA coating)塗層製備 35 3.5.2 二氧化矽(IPA-SiO2 coating)塗層製備 35 3.5.3 二氧化鈦-二氧化矽(IPA-SiO2-TiO2 coating)塗層製備 35 第四章 實驗結果 36 4.1 半手工與自動化系統製備塗層比較 36 4.1.1 塗層表面形貌比較分析 36 4.1.2 塗層光學性質比較分析 38 4.1.3 塗層冷卻效果比較分析 39 4.2 以自動化系統製程參數分析 40 4.2.1 塗層漿料黏度 40 4.2.2 塗層表面性質比較分析 40 4.2.3 塗層光學性質比較分析 43 4.2.4 塗層冷卻效果 46 4.3 以自動化系統製備SiO2塗層製程參數最佳化 47 4.3.1 塗層表面性質比較分析 48 4.3.2 塗層光學性質分析 50 4.3.3 塗層冷卻效果 51 第五章 實驗討論 53 5.1 自動化塗佈對塗層效果之影響 53 5.2 漿料濃度對輻射冷卻塗層冷卻性能之影響 54 5.3 厚度對輻射冷卻塗層冷卻性能之影響 56 5.4 加入二氧化鈦反射材料對輻射冷卻性能之改善 57 第六章 結論 58 第七章 未來工作 59 參考文獻 60

[1] J. Houghton, Rep. Prog. Phys., 68 (2005) 1343-1403.
[2] E.A. Goldstein, A.P. Raman, S. Fan, Nat Energy, 2 (2017) 1-7.
[3] Ipcc, Global Warming of 1.5°C: IPCC Special Report on impacts of global warming of 1.5°C above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty, Cambridge University Press (2022).
[4] A.M. Rizwan, L.Y.C. Dennis, C. Liu, Journal of Environmental Sciences, 20 (2008) 120-128.
[5] K.C.S. Ly, X. Liu, X. Song, C. Xiao, P. Wang, H. Zhou, T. Fan, Adv. Funct. Mater., n/a (2022) 2203789.
[6] H. Nazarnia, M. Nazarnia, H. Sarmasti, W.O. Wills, Civ Eng J, 6 (2020) 1375-1399.
[7] Y. Zhu, H. Qian, R. Yang, D. Zhao, Solar Energy, 218 (2021) 195-210.
[8] Z.M. Zhang, Nano/Microscale Heat Transfer, Springer International Publishing (2020).
[9] W. Li, S. Fan, Optics & Photonics News, 30 (2019) 32.
[10] M.F. Modest, S. Mazumder, Radiative Heat Transfer, Academic Press (2021).
[11] G. Butcher, Tour of the Electromagnetic Spectrum, Government Printing Office (2016).
[12] Y. Cui, X. Luo, F. Zhang, L. Sun, N. Jin, W. Yang, Particuology, 67 (2022) 57-67.
[13] B. Zhao, M. Hu, X. Ao, G. Pei, Appl. Therm. Eng., 155 (2019) 660-666.
[14] J.P. Bijarniya, J. Sarkar, P. Maiti, Renewable and Sustainable Energy Reviews, 133 (2020) 110263.
[15] W.H. Organization, Environmental Health Criteria 14. Ultraviolet radiation., (1979).
[16] J. Peoples, X. Li, Y. Lv, J. Qiu, Z. Huang, X. Ruan, Int. J. Heat Mass Transfer, 131 (2019) 487-494.
[17] C. Riordan, R. Hulstron, in: IEEE Conference on Photovoltaic Specialists, 1990, pp. 1085-1088 vol.1082.
[18] T.M. Crawford, C.E. Duchon, J. Appl. Meteor., 38 (1999) 474-480.
[19] T.S. Eriksson, C.G. Granqvist, Appl. Opt., 21 (1982) 4381-4388.
[20] D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan, X. Yin, R. Yang, Applied Physics Reviews, 6 (2019) 021306.
[21] X. Yin, R. Yang, G. Tan, S. Fan, Science, 370 (2020) 786-791.
[22] G. Kirchhoff, Über das Verhältnis zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht, in: Von Kirchhoff bis Planck, Springer, 1978, pp. 131-151.
[23] G.S. Ranganath, Resonance, 13 (2008) 115-133.
[24] M.M. Hossain, M. Gu, Advanced Science, 3 (2016) 1500360.
[25] C. Liu, Y. Wu, B. Wang, C. Zhao, H. Bao, Solar Energy, 183 (2019) 218-225.
[26] J. Liu, J. Zhang, D. Zhang, S. Jiao, J. Xing, H. Tang, Y. Zhang, S. Li, Z. Zhou, J. Zuo, Renewable and Sustainable Energy Reviews, 130 (2020) 109935.
[27] B. Zhao, M. Hu, X. Ao, N. Chen, G. Pei, Applied Energy, 236 (2019) 489-513.
[28] N.N. Shi, C.-C. Tsai, F. Camino, G.D. Bernard, N. Yu, R. Wehner, Science, 349 (2015) 298-301.
[29] W. Wu, S. Lin, M. Wei, J. Huang, H. Xu, Y. Lu, W. Song, Sol. Energy Mater. Sol. Cells, 210 (2020) 110512.
[30] A.R. Gentle, G.B. Smith, Nano Lett., 10 (2010) 373-379.
[31] W. Li, Y. Li, K.W. Shah, Solar Energy, 207 (2020) 247-269.
[32] A.W. Harrison, M.R. Walton, Solar Energy, 20 (1978) 185-188.
[33] A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Nature, 515 (2014) 540-544.
[34] X. Yu, J. Chan, C. Chen, Nano Energy, 88 (2021) 106259.
[35] M. Muselli, D. Beysens, J. Marcillat, I. Milimouk, T. Nilsson, A. Louche, Atmospheric Research, 64 (2002) 297-312.
[36] A.F.G. Jacobs, B.G. Heusinkveld, S.M. Berkowicz, Atmospheric Research, 87 (2008) 377-385.
[37] B. Zhao, C. Wang, M. Hu, X. Ao, J. Liu, Q. Xuan, G. Pei, Energy, 238 (2022) 121761.
[38] Z. Yi, Y. lv, D. Xu, J. Xu, H. Qian, D. Zhao, R. Yang, Energy and Built Environment, 2 (2021) 214-222.
[39] C. Feng, P. Yang, H. Liu, M. Mao, Y. Liu, T. Xue, J. Fu, T. Cheng, X. Hu, H.J. Fan, K. Liu, Nano Energy, 85 (2021) 105971.
[40] J. Mandal, Y. Yang, N. Yu, A.P. Raman, Joule, 4 (2020) 1350-1356.
[41] B. Zhao, M. Hu, X. Ao, G. Pei, Applied Energy, 205 (2017) 626-634.
[42] S. Cui, C. Ahn, M.C. Wingert, D. Leung, S. Cai, R. Chen, Applied Energy, 168 (2016) 332-339.
[43] A.R. Gentle, G.B. Smith, Advanced Science, 2 (2015) 1500119.
[44] R. Family, M.P. Mengüç, Procedia Environmental Sciences, 38 (2017) 752-759.
[45] M. Hu, B. Zhao, Suhendri, X. Ao, J. Cao, Q. Wang, S. Riffat, Y. Su, G. Pei, Renewable and Sustainable Energy Reviews, 160 (2022) 112304.
[46] K. Wang, G. Luo, X. Guo, S. Li, Z. Liu, C. Yang, Solar Energy, 225 (2021) 245-251.
[47] H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan, Z. Wu, X. Wang, Y. Zheng, H. Zhou, T. Fan, Proceedings of the National Academy of Sciences, 117 (2020) 14657-14666.
[48] J. Li, Y. Liang, W. Li, N. Xu, B. Zhu, Z. Wu, X. Wang, S. Fan, M. Wang, J. Zhu, Sci. Adv., 8 (2022) eabj9756.
[49] X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang, H. Zhou, T. Fan, Adv. Funct. Mater., 30 (2020) 1907562.
[50] P.-C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, Y. Cui, Science, 353 (2016) 1019-1023.
[51] L. Cai, Y. Peng, J. Xu, C. Zhou, C. Zhou, P. Wu, D. Lin, S. Fan, Y. Cui, Joule, 3 (2019) 1478-1486.
[52] A.P. Raman, W. Li, S. Fan, Joule, 3 (2019) 2679-2686.
[53] L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z. Yu, B. Ooi, Q. Gan, Nat Sustain, 2 (2019) 718-724.
[54] M.A. Kecebas, M.P. Menguc, A. Kosar, K. Sendur, J. Quant. Spectrosc. Radiat. Transfer, 198 (2017) 179-186.
[55] E. Rephaeli, A. Raman, S.H. Fan, Nano Lett., 13 (2013) 1457-1461.
[56] P. You, X. Li, Y. Huang, X. Ma, M. Pu, Y. Guo, X. Luo, Materials, 13 (2020) 2885.
[57] D. Chae, M. Kim, P.-H. Jung, S. Son, J. Seo, Y. Liu, B.J. Lee, H. Lee, ACS Appl. Mater. Interfaces, 12 (2020) 8073-8081.
[58] J.L. Kou, Z. Jurado, Z. Chen, S.H. Fan, A.J. Minnich, Acs Photonics, 4 (2017) 626-630.
[59] Y. Yang, L. Long, S. Meng, N. Denisuk, G. Chen, L. Wang, Y. Zhu, Sol. Energy Mater. Sol. Cells, 211 (2020) 110548.
[60] M.M. Hossain, B. Jia, M. Gu, Advanced Optical Materials, 3 (2015) 1047-1051.
[61] S.Y. Jeong, C.Y. Tso, Y.M. Wong, C.Y.H. Chao, B. Huang, Sol. Energy Mater. Sol. Cells, 206 (2020) 110296.
[62] C. Ziming, W. Fuqiang, G. Dayang, L. Huaxu, S. Yong, Sol. Energy Mater. Sol. Cells, 213 (2020) 110563.
[63] Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou, G. Tan, R. Yang, X. Yin, Science, 355 (2017) 1062-1066.
[64] Z. Cheng, Y. Shuai, D. Gong, F. Wang, H. Liang, G. Li, Sci. China Technol. Sci., 64 (2021) 1017-1029.
[65] X. Li, J. Peoples, P. Yao, X. Ruan, ACS Appl. Mater. Interfaces, 13 (2021) 21733-21739.
[66] Y. Liu, S. Son, D. Chae, P.-H. Jung, H. Lee, Sol. Energy Mater. Sol. Cells, 213 (2020) 110561.
[67] Z. Huang, X. Ruan, Int. J. Heat Mass Transfer, 104 (2017) 890-896.
[68] G. Chen, Y. Wang, J. Qiu, J. Cao, Y. Zou, S. Wang, D. Jia, Y. Zhou, ACS Appl. Mater. Interfaces, 12 (2020) 54963-54971.
[69] J. Mandal, Y.K. Fu, A.C. Overvig, M.X. Jia, K.R. Sun, N.N. Shi, H. Zhou, X.H. Xiao, N.F. Yu, Y. Yang, Science, 362 (2018) 315-318.
[70] D. Li, X. Liu, W. Li, Z. Lin, B. Zhu, Z. Li, J. Li, B. Li, S. Fan, J. Xie, J. Zhu, Nat. Nanotechnol., 16 (2021) 153-158.
[71] T. Li, Y. Zhai, S.M. He, W.T. Gan, Z.Y. Wei, M. Heidarinejad, D. Dalgo, R.Y. Mi, X.P. Zhao, J.W. Song, J.Q. Dai, C.J. Chen, A. Aili, A. Vellore, A. Martini, R.G. Yang, J. Srebric, X.B. Yin, L.B. Hu, Science, 364 (2019) 760-+.
[72] B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu, H. Min, S. Tang, X. Meng, Nano Energy, 81 (2021) 105600.
[73] 施薇雅, 碩士論文, 用於日間輻射冷卻應用的軟質材料工程,國立台灣大學 (2021).
[74] T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen, L. Wu, Nat Commun, 12 (2021) 365.
[75] J. Mandal, M. Jia, A. Overvig, Y. Fu, E. Che, N. Yu, Y. Yang, Joule, 3 (2019) 3088-3099.
[76] D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J.K. Kim, J. Rho, Nano Energy, 79 (2021) 105426.
[77] H. Zhao, Q. Sun, J. Zhou, X. Deng, J. Cui, Adv. Mater., 32 (2020) 2000870.
[78] H. Bao, C. Yan, B. Wang, X. Fang, C.Y. Zhao, X. Ruan, Sol. Energy Mater. Sol. Cells, 168 (2017) 78-84.
[79] 陳品璇, 碩士論文, 聚甲基丙烯酸甲酯塗層的製備與性質分析於輻射冷卻之應用, 台科大 (2021).
[80] 陳怡蓁, 碩士論文, 製備與分析應用於輻射冷卻之二氧化鈦-二氧化矽-聚甲基丙烯酸甲酯塗層,台科大 (2022).
[81] N.S. Claxton, T.J. Fellers, M.W. Davidson, Encyclopedia of Medical Devices and Instrumentation, 21 (2006) 1-37.

無法下載圖示 全文公開日期 2033/07/12 (校內網路)
全文公開日期 2033/07/12 (校外網路)
全文公開日期 2033/07/12 (國家圖書館:臺灣博碩士論文系統)
QR CODE