Basic Search / Detailed Display

Author: 翁世璋
Shih-Chang Wong
Thesis Title: 利用最佳化各式參數實現漫畫框格切割
Arbitrary Parameter Optimization for Manga Panel Extraction
Advisor: 姚智原
Chih-Yuan Yao
賴祐吉
Yu-Chi Lai
Committee: 朱宏國
Hung-Kuo Chu
戴文凱
Wen-Kai Tai
阮聖彰
Shanq-Jang Ruan
Degree: 碩士
Master
Department: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
Thesis Publication Year: 2017
Graduation Academic Year: 105
Language: 中文
Pages: 121
Keywords (in Chinese): 漫畫框格偵測參數最佳化
Keywords (in other languages): Manga, Panel Extraction, Parameter Optimization
Reference times: Clicks: 302Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 在如何調整漫畫成適合手持裝置閱讀的問題中,需要將故事框從漫畫中擷取出來,並對其內容物進行處理,使結果更適合手持裝置上的閱讀,而確定故事框格的位置是最基礎且重要的步驟。但是,由於各系列或各集漫畫中,結構特徵皆可能不相同,例如,各系列漫畫會偏好使用不同的邊框線段長度,使得框格定位的演算法往往需要手動參數調整以達到最高正確率。本論文提出一個利用自動結果評分來找尋最佳參數的自動參數最佳化系統,以減少演算法中的手動調整。此結果評分依據兩個標準。分別為,框格偵測結果的總面積覆蓋率,以及結果框格之間互相平行的框線。透過此結果評分機制,本論文的方法能夠自動產生最佳結果的參數組合。

    除了參數的問題之外,目前由其他研究所提出的框格定位演算法也無法處理「破圖」的狀況。所謂破圖是現代新式漫畫常見的表現手法,為一圖片中出現大型前景繪圖物件而遮蔽多個框格的狀況,如海賊王(One Piece)中的人物登場介紹。此狀況會造成框格結構元素的大量損失, 也會造成漫畫頁面中,連通物件標記法產生的物件較不具有明顯的結構規則, 降低了目前已連通物件與切割線為基礎的方法的有效性。為此,本研究提出了一個新的框格偵測的演算法。此方法利用線段偵測與邊角偵測產生本論文中所稱的「構件」,再透過這些構件的互相配對定位出框格的範圍。由於此方法不需使用連通物件來產生切割線或框格範圍。因此,除了一般框格之外,本方法也可以用於處理被破圖狀況中框格的特殊情形。

    本論文最後呈現三個實驗,以驗證本論文提出的自動參數最佳化系統能夠找出最合適於一漫畫頁面的最佳參數,與驗證本論文的框格偵測法能夠有效的在破圖狀況中偵測框格位置。在第一個實驗中,本研究將本論文提出之自動參數最佳化系統應用於本論文的框格偵測法,並使用本研究的漫畫圖庫進行實驗,以評估參數最佳化系統對於提升框格偵測成功率的有效性。此實驗也使用本論文的框格偵測法與其他方法處理相同漫畫圖庫,以得到未使用自動參數最佳化系統的比較基準,並在實驗最後呈現了所有方法的結果數據。這些數據顯示了自動參數最佳化系統能夠自動調整參數而產生更正確的結果,因此產生了高於比較基準的正確率。在第二個實驗中,本研究將本論文提出之框格偵測法與其他研究的方法套用於本研究的破圖圖庫,以評估各方法應用於破圖頁面的表現, 並在最後提出得到的結果結果數據。這些數據顯示了由於本研究提出的框格定位演算法利用構件配對而不是單純的連通物件分析,而能達到比其他方法還高的正確率。在第三個實驗中,本研究也對過去方法所使用的實驗資料進行處理,並提出結果比較,顯示了本研究提出的參數最佳化系統的有效性。


    In the problem of making manga easier to read on handheld devices, the most essential and basic step is locating positions of each panel on the page since processing on the contents in the area of panels was required to make them more readable on handheld devices. However, due to the varying layout structure features in each series or volume of manga such as the different panel width used in every series, manual parameter adjustment is often needed to achieve the best possible result for many panel extraction algorithms. In this paper, we propose an automatic parameter optimization system based on automatic result evaluation to reduce manual adjustment in panel extraction process. The automatic result evaluation checks for two criteria. The first is the accumulated area of the extracted panels. The second is the number of parallel panel edges between extracted panels. With the automatic result evaluation, our method is able to find correct parameter sets.

    Aside from the parameter issues, current algorithms by other studies are not able to process manga pages with large extruding objects. Such pages will make the white gap area between panels very difficult to detect for connected component based algorithms and very hard to distinguish whether the white area is inside or outside of a panel, reducing the effectiveness of connected component component based or division line based algorithm. For this reason, this paper also proposed a novel method for panel extraction. The method employs line segment detection and corner detection to detect what are called "components" in this paper, and match up these components with each other to locate the position of the panels. As the method does not require connected component detection to detect division line or initial panel areas, it can be used to extract panels from both normal manga pages or manga pages with large extruding objects.

    At the end of this paper, three experiments are presented to verify that our automatic parameter optimization can detect bad cases and the parameter set with which the algorithm can perform better, and our panel extraction method is able to locate panel positions effectively from manga pages with large extruding objects. The first experiment will compare the results using and without using the automatic parameter optimization to show the optimization is able to improve the result. The second experiment will present the result of applying our method to our collected pages with large extruding objects to show our method is effective for this case. In the third experiment, this study applies the proposed system to the data set used in the past researches and compares results to display our system's effectiveness.

    摘要 i Abstract iii 目錄 v 表目錄 viii 圖目錄 ix 符號說明 xiii 1 緒論 1 1.1 問題與名詞定義 2 1.2 主要貢獻 5 1.3 論文架構 6 2 相關研究 8 2.1 框格偵測相關研究 8 2.1.1 基於分割線之方法 8 2.1.2 基於連通物件之方法 10 2.1.3 基於多邊形偵測之方法 11 2.1.4 基於角點之方法 12 2.2 手持裝置漫畫瀏覽系統 13 2.3 動畫漫畫化相關研究 14 3 方法總覽 15 4 框格偵測 19 4.1 邊框修補與框格區塊偵測 19 4.1.1 連通物件偵測法 19 4.1.2 邊框修補 21 4.1.3 框格區塊偵測 27 4.2 特徵偵測 29 4.2.1 框線偵測 29 4.2.2 角點偵測 35 4.3 特徵配對 36 4.3.1 構件偵測 36 4.3.2 構件配對 40 4.4 無邊框物件區域 51 5 自動化參數調整 53 5.1 參數評分 54 5.2 參數突變 55 6 實驗結果與討論 57 6.1 正確框格標準與正確基準 57 6.2 實驗資料 59 6.3 實驗 64 7 結論與未來工作 100 參考文獻 102

    [1] C.-J. Tsai, C.-Y. Yao, P.-y. Chiang, Y.-C. Lai, M.-T. Chi, H.-K. Chu, Y.-S.
    Wong, and Y.-S. Wang, “Adaptive manga re-layout on mobile device,” in ACM
    SIGGRAPH 2013 Posters, SIGGRAPH ’13, pp. 57:1–57:1, 2013.
    [2] Y. Cao, A. B. Chan, and R. W. H. Lau, “Automatic stylistic manga layout,”
    ACM Trans. Graph., vol. 31, no. 6, pp. 141:1–141:10, 2012.
    [3] X. Pang, Y. Cao, R. W. Lau, and A. B. Chan, “A robust panel extraction
    method for manga,” in Proceedings of the 22Nd ACM International Conference
    on Multimedia, MM ’14, pp. 1125–1128, 2014.
    [4] T. Tanaka, K. Shoji, F. Toyama, and J. Miyamichi, “Layout analysis of treestructured
    scene frames in comic images,” in Proceedings of the 20th International
    Joint Conference on Artifical Intelligence, IJCAI’07, pp. 2885–2890,
    2007.
    [5] C. H. Chan, H. Leung, and T. Komura, “Automatic panel extraction of color
    comic images,” in Proceedings of the Multimedia 8th Pacific Rim Conference on
    Advances in Multimedia Information Processing, PCM’07, pp. 775–784, 2007.
    [6] E. Han, K. Kim, H. Yang, and K. Jung, “Frame segmentation used mlp-based
    x-y recursive for mobile cartoon content,” in Proceedings of the 12th International
    Conference on Human-computer Interaction: Intelligent Multimodal
    Interaction Environments, HCI’07, pp. 872–881, 2007.
    [7] D. Ishii and H. Watanabe, “A study on frame position detection of digitized
    comics images,” in Workshop on Picture Coding and Image Processing,
    PCSJ2010/IMPS2010, 2010.
    [8] A. K. N. Ho, J. C. Burie, and J. M. Ogier, “Panel and speech balloon extraction
    from comic books,” in 2012 10th IAPR International Workshop on Document
    Analysis Systems, pp. 424–428, 2012.
    [9] H. Samet and M. Tamminen, “Efficient component labeling of images of arbitrary
    dimension represented by linear bintrees,” IEEE Trans. Pattern Anal.
    Mach. Intell., vol. 10, no. 4, pp. 579–586, 1988.
    [10] K. Arai and T. Herman, “Method for automatic e-comic scene frame extraction
    for reading comic on mobile devices,” in 2010 Seventh International Conference
    on Information Technology: New Generations, pp. 370–375, 2010.
    [11] C. Rigaud, N. Tsopze, J.-C. Burie, and J.-M. Ogier, “Robust frame and text extraction
    from comic books,” in Proceedings of the 9th International Conference
    on Graphics Recognition: New Trends and Challenges, GREC’11, pp. 129–138,
    2013.
    [12] L. Li, Y. Wang, C. Y. Suen, Z. Tang, and D. Liu, “A tree conditional random
    field model for panel detection in comic images,” Pattern Recogn., vol. 48, no. 7,
    pp. 2129–2140, 2015.
    [13] L. Li, Y. Wang, Z. Tang, and D. Liu, “Comic image understanding based on
    polygon detection,” in Document Recognition and Retrieval XX, Proc. SPIE,
    pp. 86580B–86580B–11, 2013.
    [14] L. Li, Y. Wang, Z. Tang, and L. Gao, “Automatic comic page segmentation
    based on polygon detection,” Multimedia Tools Appl., vol. 69, no. 1, pp. 171–
    197, 2014.
    [15] Y. Wang, Y. Zhou, and Z. Tang, “Comic frame extraction via line segments
    combination,” in 2015 13th International Conference on Document Analysis
    and Recognition (ICDAR), pp. 856–860, 2015.
    [16] NHN Taiwan Corporation, “Comico,” 2017.
    [17] Ruian I like Network Co. Ltd., “Manhuaren,” 2017.
    [18] W.-T. Chu and H.-H. Wang, “Enabling portable animation browsing by transforming
    animations into comics,” in Proceedings of the 2Nd ACM International
    Workshop on Interactive Multimedia on Mobile and Portable Devices, IMMPD
    ’12, pp. 3–8, 2012.
    [19] S. Suzuki and K. Abe, “Topological structural analysis of digitized binary images
    by border following,” Computer Vision, Graphics, and Image Processing,
    vol. 30, no. 1, pp. 32 – 46, 1985.
    [20] J. Serra, Image Analysis and Mathematical Morphology. Orlando, FL, USA:
    Academic Press, Inc., 1983.
    [21] R. Grompone von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, “Lsd: a
    line segment detector,” Image Processing On Line, vol. 2, pp. 35–55, 2012.
    [22] J. Matas, C. Galambos, and J. Kittler, “Robust detection of lines using the
    progressive probabilistic hough transform,” CVIU, vol. 78, no. 1, pp. 119–137,
    2000.
    [23] C. Harris and M. Stephens, “A combined corner and edge detector,” in In Proc.
    of Fourth Alvey Vision Conference, pp. 147–151, 1988.
    [24] A. G. Khachaturyan, S. V. Semenovskaya, and B. K. Vainshtein, “Statisticalthermodynamic
    approach to determination of structure amplitude phases,”
    Sov.Phys. Crystallography, vol. 24, no. 5, pp. 519–524, 1979.
    [25] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis. Tiergartenstraße 17,
    69121 Heidelberg, Germany: Springer-Verlag Berlin Heidelberg, 1998.
    [26] K. Arai and T. Herman, “Automatic e-comic content adaptation,” International
    Journal of Ubiquitous Computing (IJUC), vol. 1, no. 1, pp. 1 – 11, 2010.
    [27] D. Liu, Y. Wang, Z. Tang, L. Li, and L. Gao, “Automatic comic page image
    understanding based on edge segment analysis,” in Document Recognition and
    Retrieval XXI, Proc. SPIE, pp. 90210J–90210J–12, 2013.
    [28] M. Stommel, L. I. Merhej, and M. G. M¨uller, “Segmentation-free detection of
    comic panels,” in Proceedings of the 2012 International Conference on Computer
    Vision and Graphics, ICCVG’12, pp. 633–640, 2012.

    無法下載圖示 Full text public date 2022/08/17 (Intranet public)
    Full text public date This full text is not authorized to be published. (Internet public)
    Full text public date This full text is not authorized to be published. (National library)
    QR CODE