簡易檢索 / 詳目顯示

研究生: 蕭承宇
Cheng-Yu Hsiao
論文名稱: 不同矽源對於單劑型爐石基鹼激發漿體工程性質之影響
Effects of different silica sources on the engineering properties of one-part slag based alkali-activated paste
指導教授: 張大鵬
Ta-Peng Chang
陳君弢
Chun-Tao Chen
口試委員: 林秉如
Ping-Ju Lin
李韋皞
Wei-Hao Lee
施正元
Jeng-Ywan Shih
陳君弢
Chun-Tao Chen
張大鵬
Ta-Peng Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 204
中文關鍵詞: 單劑型鹼激發漿體偏矽酸鈉碳酸鈉凝結時間稻殼灰矽灰玻璃粉
外文關鍵詞: one-part alkali actvator material paste, sodium siliate, sodium carbonate, setting time, rice husk ash, silica fume, glass powder
相關次數: 點閱:205下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討使用碳酸鈉作為緩凝劑體積取代由偏矽酸鈉作為鹼激發劑之單劑型爐石基鹼激發漿體(alkali-activated paste),以解決偏矽酸鈉所造成凝結時間過短之問題。由於使用碳酸鈉作為激發劑有降低抗壓強度之現象,故本試驗規劃使用不同富矽材料(稻殼灰、矽灰、玻璃粉)體積取代爐石粉以改善抗壓強度。試驗分為三階段,分別為前導試驗、第一階段試驗、第二階段試驗。主要試驗變數為鹼激發劑比例(10%、12%、14%、16%)、碳酸鈉取代率(0%、25%、50%、75%、100%)及不同富矽材料取代率(0%、5%、10%、15%、20%);性能指標包含新拌性質(凝結時間、坍流度、水化熱)、硬固性質(抗壓強度、長度變化率、熱傳導係數)及微觀分析(XRD、SEM、NMR)。
    前導試驗之目的為決定水固比,變數為0.3、0.4、0.5,當水固比使用0.3時,凝結時間過短難以澆置,水固比為0.5時28天強度最低,綜合評估凝結時間、坍流度、28天抗壓強度後,以水固比0.4最為合適;第一階段試驗中,鹼激發劑比率升高導致凝結膠體凝結時間縮短,16%時初凝時間僅為15分鐘;使用碳酸鈉取代偏矽酸鈉具有顯著緩凝效果,但於碳酸鈉取代率為75%時,呈現出最長初凝時間,甚至出現三天齡期時,尚未硬固及未發展出強度;抗壓強度大致上隨著碳酸鈉之取代量增加而減少,長度變化率隨著碳酸鈉取代率增加而增加,使用過多碳酸鈉易造成試體表面產生白色粉末堆積,該產物不利於耐久性,因此,最適宜鹼激發劑比率及碳酸鈉取代率分別為12%及25%;第二階段試驗結果顯示:(1)使用稻殼灰取代部分爐石將增加漿體凝結時間,稻殼灰之取代有助於提升漿體之早期與晚期強度,其中以稻殼灰取代量10%之組別較為明顯;隨著稻殼灰取代率增加,漿體長度變化率下降,具有改善漿體體積穩定性之效果。(2)使用矽灰取代爐石粉具有延長漿體凝結時間之效果;抗壓強度方面,僅在取代率5%時有助於提高漿體早期強度,其餘取代量及齡期皆無發現提升之現象;漿體體積穩定性則是各比例皆能減少長度變化率,其中取代率5%時最佳,隨著矽灰取代率增加,漿體長度變化率再次增加,建議取代率為5%(或<10%)。(3)玻璃粉取代爐石之漿體初凝時間除取代率20%外,其餘取代率之凝結時間皆與0%時相近;漿體28天抗壓強度僅在玻璃粉取代率為10%時具有增強之效果;玻璃粉對於漿體長度變化率之改善效果較不明顯。(4)使用碳酸鈉造成試體表面產生白色粉末堆積,依據XRD分析此粉末為碳酸鈣,SEM可看出該表面具有許多孔隙。經過NMR分析顯示,添加碳酸鈉後導致Q2(2Al)增加與Q2(1Al)減少,推估為抗壓強度下降之可能原因;然而,使用稻殼灰與矽灰取代後可再次增加Q2(1Al),然而玻璃粉之反應性較低,較無此效果。


    This study explores the effects of using sodium carbonate as a retarder to replace sodium silicate as an alkali activator in one-part ground granulated blast-furnace slag (GGBFS) based alkali activated paste to allivate the issue of its quick setting caused by using sodium silicate. Because sodium carbonate being an activator may reduce the compressive strength of paste, this study using some silicon-rich material(rice husk ash, silica fume, glass powder) to partly replace GGBFS to increase compressive strength. There are three steps for experiment, including pilot, first step, and second step. The main variables are alkali actvator ratio (10%, 12%, 14%, 16%), sodium silicate replacement percentage (0%, 25%, 50%, 75%, 100%), and different silicon rich materials’ replacement percentage (0%, 5%, 10%, 15%, 20%); prformance property including fresh properties(setting time, flowbility, hydration heat), harden property(compressive strength, shrinkage, thermal conductivity), and microscopic analysis(XRD, SEM, NMR).
    The purpose of pilot experiment is deciding the sufficient water/solid ratio for first step and second step, variables for pilot experiment are w/s =0.3, 0.4, 0.5. The result shows, when w/s=0.3, the harden is too quick to cast; and when w/s=0.5 has lowest compressive strength on age 28 days; therefore, comparing whole experiment, the w/s=0.4 is the best for first and second step experiment. For first step experiment, the results show that setting time decreases with increasing proportion of alkali activator. When the alkali activator is 16%, the initial setting is only 15 miuntes; the use of sodium carbonate has a good effect on increasing the setting time; however, the setting time seems to be the longest when sodium carbonat replacement is 75%, some specimens even don’t harden and develop strength on age three days. The compressive strength decreases with increasing proportion of sodium carbonate. The skrinkage increases when sodium carbonate increases, and using excess among of sodium carbonate may cause accumulation of white powder on the surface of specimen, the product is unfavorable for durability. Therefore, the suitable alkali actvator ratio and sodium carbonate replacement are 12% and 25%, respectly. The second step experiment result shows: (1) Using rice husk ash to replace some slag can increase setting time but decrease flowbility, and it can increase the early and later strength of paste. 10% replacement has an obvious effect. For volumn stability, using rice husk ash can decrease the skrinkag. (2) For silica fume’s replacement, silica fume can increase the setting but decrease the flowbility, just 5% replacement can increase the early strength, but there is no positive effect for other replacement and other ages. Silica fume also can decrease the skrinkage, and 5% is the best replacement, because over 5% will cause the skrinkage increase again. (3) Except 20% replacement of glass powder, the initial setting time of glass powder’s replacement is similar to 0% replacement. Glass powder cannot increase the early strength of paste, but 10% has a little bit positive effect for age 28 days. There is no obsive improvement for skrinkage by using glass powder. (4) Using sodium carbonate causes accumulation of white powder on the specimen surface, according to XRD analysis, that powder is calcium carbonate, and according SEM image, that white powder with a large amount of pores. According to NMR analysis results, using sodium carbonate causes increasement of Q2(2Al) and decreasement of Q2(1Al), it should be the reason of decrease of compressive strength, however, using RHA and SF are able to increase Q2(1Al), but GP doesn’t have this effect because of its low reactivity.

    摘要 i Abstract iii 致謝 vi 目錄 vii 表目錄 x 圖目錄 xii 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 3 1.3 研究方法與流程 4 1.4 預期成果 5 第二章 文獻回顧 7 2.1 單劑型鹼激發材料進展 7 2.2 鹼激發材料及無機聚合物反應機理 8 2.2.1 鹼激發材料之反應機理 8 2.2.2 無機聚合物之反應機理 12 2.2.3 基本組成結構 16 2.2.4 反應產物 17 2.3 鹼激發材料組成材料及影響 20 2.3.1 鹼性激發劑 20 2.3.2 被激發基材 23 2.4 單劑型鹼激發材料配比變數影響 33 2.4.1 水固比 33 2.4.2 鹼激發劑比例 33 2.5鹼激發材料新拌性質 34 2.5.1 凝結時間 34 2.5.2 坍流度 35 2.5.3 水化熱 35 2.6 鹼激發材料硬固性質 35 2.6.1 抗壓強度 36 2.6.2 體積穩定性(長度變化率試驗) 37 2.7核磁共振光譜(NMR) 38 2.7.1 29Si NMR結構分析 38 2.7.2 27Al NMR結構分析 39 第三章 試驗計畫 65 3.1 試驗內容及流程 65 3.2 試驗材料 65 3.3 試驗儀器與設備 67 3.4 試驗變數與試驗項目 70 3.4.1 試驗內容說明 70 3.4.2 配比編號說明、設計目的、養護環境 72 3.4.3 試驗項目說明 74 3.5 單劑型鹼激發材料試體之拌合步驟與製作方式 75 3.6 試驗項目及方法 76 3.6.1 材料基本物化性分析 76 3.6.2 新拌性質試驗 78 3.6.3 硬固性質試驗 79 3.6.4 微觀分析 82 第四章 工程性質試驗與結果 101 4.1 前導試驗 101 4.1.1 新拌性質 101 4.1.2 硬固性質-抗壓強度 102 4.2 單劑型鹼激發材料第一階段試驗結果 102 4.2.1 新拌性質 103 4.2.2 硬固性質 106 4.3 單劑型鹼激發材料第二階段試驗結果 111 4.3.1 新拌性質 111 4.3.2 硬固性質 115 第五章 微觀分析與結果 147 5.1 X光繞射分析試驗(XRD)試驗 147 5.1.1 碳酸鈉取代之影響 147 5.1.2 不同矽源取代之影響 148 5.2 場射掃描式電子顯微鏡試驗(SEM)/能量色散X射線光譜(EDS) 149 5.2.1 碳酸鈉取代之影響 149 5.2.2 不同矽源取代之影響 150 5.3 核磁共振光譜(NMR) 151 5.3.1 29Si NMR 151 5.3.2 27Al NMR 152 第六章 結論與建議 169 6.1 結論 169 6.2 建議 171 參考文獻 173

    [1] Abdel-Gawwad, HA and SA Abo-El-Enein (2016). "A novel method to produce dry geopolymer cement powder." HBRC journal 12(1): 13-24.
    [2] Alhamdan, Ahmad (2018). Shrinkage Behaviour of One and Two Part Alkali-Activated Mortars: Factors and Mitigation Techniques, Concordia University.
    [3] Ali Shah, Syed Farasat, Bing Chen, Muhammad Riaz Ahmad and M. Aminul Haque (2021). "Development of Cleaner One-part geopolymer from lithium slag." Journal of Cleaner Production 291: 125241.
    [4] Almakhadmeh, M and AM Soliman (2021). "Effects of mixing water temperatures on properties of one-part alkali-activated slag paste." Construction and Building Materials 266: 121030.
    [5] Amer, Ismail, Mohamed Kohail, MS El-Feky, Ahmed Rashad and Mohamed A Khalaf (2021). "A review on alkali-activated slag concrete." Ain Shams Engineering Journal 12(2): 1475-1499.
    [6] Azat, S., A. V. Korobeinyk, K. Moustakas and V. J. Inglezakis (2019). "Sustainable production of pure silica from rice husk waste in Kazakhstan." Journal of Cleaner Production 217: 352-359.
    [7] Barbosa, Valeria FF, Kenneth JD MacKenzie and Clelio Thaumaturgo (2000). "Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers." International journal of inorganic materials 2(4): 309-317.
    [8] Ben Haha, M., G. Le Saout, F. Winnefeld and B. Lothenbach (2011). "Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags." Cement and Concrete Research 41(3): 301-310.
    [9] Bernal, Susan A, John L Provis, Rupert J Myers, Rackel San Nicolas and Jannie SJ van Deventer (2015). "Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders." Materials and Structures 48(3): 517-529.
    [10] Billong, Ndigui, Jonathan Oti and John Kinuthia (2021). "Using silica fume based activator in sustainable geopolymer binder for building application." Construction and Building Materials 275: 122177.
    [11] Bouzoubaâ, N and B Fournier (2001). "Concrete incorporating rice-husk ash: compressive strength and chloride-ion penetrability." Materials Technology Laboratory 121: 81-92.
    [12] Chakraverty, A., P. Mishra and H. D. Banerjee (1988). "Investigation of combustion of raw and acid-leached rice husk for production of pure amorphous white silica." Journal of Materials Science 23(1): 21-24.
    [13] Chandrasekhar, S., P. N. Pramada and L. Praveen (2005). "Effect of organic acid treatment on the properties of rice husk silica." Journal of Materials Science 40(24): 6535-6544.
    [14] Chen, Bin, Jun Wang and Jinyou Zhao (2021). "Effect of sodium aluminate dosage as a solid alkaline activator on the properties of alkali-activated slag paste." Advances in Materials Science and Engineering 2021.
    [15] Davidovits, Joseph (1994). "Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cement." Journal of Materials education 16: 91-91.
    [16] Davidovits, Joseph (2005). Geopolymer, green chemistry and sustainable development solutions: proceedings of the world congress geopolymer 2005, Geopolymer Institute.
    [17] Davidovits, Joseph (2013). "Geopolymer cement." A review. Geopolymer Institute, Technical papers 21: 1-11.
    [18] de Oliveira, Leandro B., Afonso R. G. de Azevedo, Markssuel T. Marvila, Elaine C. Pereira, Roman Fediuk and Carlos Mauricio F. Vieira (2022). "Durability of geopolymers with industrial waste." Case Studies in Construction Materials 16: e00839.
    [19] Dong, Minhao, Mohamed Elchalakani and Ali Karrech (2020). "Development of high strength one-part geopolymer mortar using sodium metasilicate." Construction and Building Materials 236: 117611.
    [20] Duxson, Peter, Ana Fernández-Jiménez, John L Provis, Grant C Lukey, Angel Palomo and Jannie SJ van Deventer (2007). "Geopolymer technology: the current state of the art." Journal of Materials Science 42(9): 2917-2933.
    [21] Duxson, Peter and John L Provis (2008). "Designing precursors for geopolymer cements." Journal of the American Ceramic Society 91(12): 3864-3869.
    [22] Duxson, Peter and John L. Provis (2008). "Designing Precursors for Geopolymer Cements." Journal of the American Ceramic Society 91(12): 3825-4174.
    [23] Elzeadani, M., D. V. Bompa and A. Y. Elghazouli (2022). "One part alkali activated materials: A state-of-the-art review." Journal of Building Engineering: 104871.
    [24] Erfanimanesh, A. and M. K. Sharbatdar (2020). "Mechanical and microstructural characteristics of geopolymer paste, mortar, and concrete containing local zeolite and slag activated by sodium carbonate." Journal of Building Engineering 32: 101781.
    [25] Fapohunda, Christopher, Bolatito Akinbile and Ahmed Shittu (2017). "Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement – A review." International Journal of Sustainable Built Environment 6(2): 675-692.
    [26] Fernández-Jiménez, A., A. Palomo, I. Sobrados and J. Sanz (2006). "The role played by the reactive alumina content in the alkaline activation of fly ashes." Microporous and Mesoporous Materials 91(1): 111-119.
    [27] Fernández-Jiménez, Ana, JG Palomo and F Puertas (1999). "Alkali-activated slag mortars: mechanical strength behaviour." Cement and Concrete Research 29(8): 1313-1321.
    [28] Fernández-Jiménez, Ana and Francisca Puertas (2001). "Setting of alkali-activated slag cement. Influence of activator nature." Advances in Cement Research 13(3): 115-121.
    [29] Foong, Kah Yen, U Johnson Alengaram, Mohd Zamin Jumaat and Kim Hung Mo (2015). "Enhancement of the mechanical properties of lightweight oil palm shell concrete using rice husk ash and manufactured sand." Journal of Zhejiang University-Science A 16(1): 59-69.
    [30] Gao, Xuan, Xiao Yao, Tao Yang, Shiming Zhou, Haoguang Wei and Zuhua Zhang (2021). "Calcium carbide residue as auxiliary activator for one-part sodium carbonate-activated slag cements: Compressive strength, phase assemblage and environmental benefits." Construction and Building Materials 308: 125015.
    [31] Garcia-Lodeiro, I., A. Palomo and A. Fernández-Jiménez (2015). 2 - An overview of the chemistry of alkali-activated cement-based binders. Handbook of Alkali-Activated Cements, Mortars and Concretes. Pacheco-Torgal, F., J. A. Labrincha, C. Leonelli, A. Palomo and P. Chindaprasirt. Oxford, Woodhead Publishing: 19-47.
    [32] Gawwad, HA Abdel, S Abd El-Aleem and AS Ouda (2016). "Preparation and characterization of one-part non-Portland cement." Ceramics International 42(1): 220-228.
    [33] Gebregziabiher, Berhan S, Robert Thomas and Sulapha Peethamparan (2015). "Very early-age reaction kinetics and microstructural development in alkali-activated slag." Cement and Concrete Composites 55: 91-102.
    [34] Glasby, Tom, John Day, Russell Genrich and James Aldred (2015). "EFC geopolymer concrete aircraft pavements at Brisbane West Wellcamp Airport." Concrete 2015: 1-9.
    [35] Glukhovsky, VD (1994). Ancient, modern and future concretes. Proceedings of the First International Conference on Alkaline Cements and Concretes, Kiev, Ukraine.
    [36] Hamilton, James P, Susan L Brantley, Carlo G Pantano, Louise J Criscenti and James D Kubicki (2001). "Dissolution of nepheline, jadeite and albite glasses: toward better models for aluminosilicate dissolution." Geochimica et Cosmochimica Acta 65(21): 3683-3702.
    [37] Heitzmann, Richard F, Mark Fitzgerald and James L Sawyer (1987). Mineral binder and compositions employing the same, Google Patents.
    [38] Hossain, Sk S., P. K. Roy and Chang-Jun Bae (2021). "Utilization of waste rice husk ash for sustainable geopolymer: A review." Construction and Building Materials 310: 125218.
    [39] Kaneda, Kiyotomi (2007). 1 - Opening New Avenues for Green Organic Syntheses Using Heterogeneous Metal Catalysts. Studies in Surface Science and Catalysis. Eguchi, Koichi, Masato Machida and Ichiro Yamanaka, Elsevier. 172: 3-10.
    [40] Kim, Min Sik, Yubin Jun, Changha Lee and Jae Eun Oh (2013). "Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag." Cement and concrete research 54: 208-214.
    [41] Kim, Moonjung, Suk Hoo Yoon, Eunsoo Choi and Bogim Gil (2008). "Comparison of the adsorbent performance between rice hull ash and rice hull silica gel according to their structural differences." LWT - Food Science and Technology 41(4): 701-706.
    [42] Kovtun, Maxim, Elsabe P Kearsley and Julia Shekhovtsova (2015). "Dry powder alkali-activated slag cements." Advances in Cement Research 27(8): 447-456.
    [43] Kovtun, Maxim, Elsabe P. Kearsley and Julia Shekhovtsova (2015). "Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate." Cement and Concrete Research 72: 1-9.
    [44] Kusbiantoro, Andri, Muhd Fadhil Nuruddin, Nasir Shafiq and Sobia Anwar Qazi (2012). "The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete." Construction and Building Materials 36: 695-703.
    [45] Li, Ben, Zhong-Rui Wang, Hong-Bo Liu, Xiao-Zhou Liu, Hang Li and Xiao Chen (2019). "Meso-mechanical research on alkali-silica reaction expansion in Pyrex glass and silica sand at different temperatures and curing times." Construction and Building Materials 223: 377-393.
    [46] Li, Chao, Henghu Sun and Longtu Li (2010). "A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements." Cement and Concrete Research 40(9): 1341-1349.
    [47] Li, Long, Jian-Xin Lu, Binyu Zhang and Chi-Sun Poon (2020). "Rheology behavior of one-part alkali activated slag/glass powder (AASG) pastes." Construction and Building Materials 258: 120381.
    [48] Li, Zhenming, Tianshi Lu, Xuhui Liang, Hua Dong and Guang Ye (2020). "Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes." Cement and Concrete Research 135: 106107.
    [49] Liou, Tzong-Horng and Chun-Chen Yang (2011). "Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash." Materials Science and Engineering: B 176(7): 521-529.
    [50] Luukkonen, Tero, Zahra Abdollahnejad, Juho Yliniemi, Paivo Kinnunen and Mirja Illikainen (2018). "One-part alkali-activated materials: A review." Cement and Concrete Research 103: 21-34.
    [51] Ma, Cong, Guangcheng Long, Ye Shi and Youjun Xie (2018). "Preparation of cleaner one-part geopolymer by investigating different types of commercial sodium metasilicate in China." Journal of Cleaner Production 201: 636-647.
    [52] Ma, Cong, Bin Zhao, Shenglai Guo, Guangcheng Long and Youjun Xie (2019). "Properties and characterization of green one-part geopolymer activated by composite activators." Journal of Cleaner Production 220: 188-199.
    [53] Ma, Xiaodong, Tingshu He, Yongdong Xu, Renhe Yang and Yuhao Sun (2022). "Hydration reaction and compressive strength of small amount of silica fume on cement-fly ash matrix." Case Studies in Construction Materials 16: e00989.
    [54] Maraghechi, Hamed, Stephen Salwocki and Farshad Rajabipour (2017). "Utilisation of alkali activated glass powder in binary mixtures with Portland cement, slag, fly ash and hydrated lime." Materials and Structures 50(1): 1-14.
    [55] Mehta, Ankur and Deepankar Kumar Ashish (2020). "Silica fume and waste glass in cement concrete production: A review." Journal of Building Engineering 29: 100888.
    [56] Mehta, Ankur and Rafat Siddique (2018). "Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties." Journal of Cleaner Production 205: 49-57.
    [57] Nair, Deepa G., Alex Fraaij, Adri A. K. Klaassen and Arno P. M. Kentgens (2008). "A structural investigation relating to the pozzolanic activity of rice husk ashes." Cement and Concrete Research 38(6): 861-869.
    [58] Nehdi, Moncef, J Duquette and A El Damatty (2003). "Performance of rice husk ash produced using a new technology as a mineral admixture in concrete." Cement and concrete research 33(8): 1203-1210.
    [59] Nematollahi, Behzad, Jay Sanjayan and Faiz Uddin Ahmed Shaikh (2015). "Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate." Ceramics International 41(4): 5696-5704.
    [60] Oderji, Sajjad Yousefi, Bing Chen, Muhammad Riaz Ahmad and Syed Farasat Ali Shah (2019). "Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators." Journal of Cleaner Production 225: 1-10.
    [61] Pal, S. C., A. Mukherjee and S. R. Pathak (2003). "Investigation of hydraulic activity of ground granulated blast furnace slag in concrete." Cement and Concrete Research 33(9): 1481-1486.
    [62] Patel, Yamini J and Niraj Shah (2018). "Enhancement of the properties of ground granulated blast furnace slag based self compacting geopolymer concrete by incorporating rice husk ash." Construction and Building Materials 171: 654-662.
    [63] Premkumar, R., P. Hariharan and S. Rajesh (2022). "Effect of silica fume and recycled concrete aggregate on the mechanical properties of GGBS based geopolymer concrete." Materials Today: Proceedings 60: 211-215.
    [64] Provis, John L and Susan A Bernal (2014). "Geopolymers and related alkali-activated materials." Annual Review of Materials Research 44: 299-327.
    [65] Provis, John L. (2018). "Alkali-activated materials." Cement and Concrete Research 114: 40-48.
    [66] Provis, John L. and Jannie S. J. van Deventer (2019). 16 - Geopolymers and Other Alkali-Activated Materials. Lea's Chemistry of Cement and Concrete (Fifth Edition). Hewlett, Peter C. and Martin Liska, Butterworth-Heinemann: 779-805.
    [67] Puertas, F, M Torres-Carrasco, C Varga, JJ Torres, E Moreno, JG Palomo, F Puertas, M Torres-Carrasco, C Varga and JJ Torres (2012). Re-use of urban and industrial glass waste to prepare alkaline cements. 4th International Conference on Engineering for Waste and Biomass Valorisation, Porto, Portugal.
    [68] Rajan, Hosanna Solomon and Parthiban Kathirvel (2021). "Sustainable development of geopolymer binder using sodium silicate synthesized from agricultural waste." Journal of Cleaner Production 286: 124959.
    [69] Real, Concha, Maria D Alcala and Jose M Criado (1996). "Preparation of silica from rice husks." Journal of the American ceramic society 79(8): 2012-2016.
    [70] Redden, Rachel and Narayanan Neithalath (2014). "Microstructure, strength, and moisture stability of alkali activated glass powder-based binders." Cement and Concrete Composites 45: 46-56.
    [71] Refaat, Moataz, Alaa Mohsen, El-Sayed AR Nasr and Mohamed Kohail (2021). "Minimizing energy consumption to produce safe one-part alkali-activated materials." Journal of Cleaner Production 323: 129137.
    [72] Ren, Jie, Hongfang Sun, Qun Li, Zhenming Li, Li Ling, Xiaogang Zhang, Yanshuai Wang and Feng Xing (2021). "Experimental comparisons between one-part and normal (two-part) alkali-activated slag binders." Construction and Building Materials 309: 125177.
    [73] Robert, Dilan, Edwin Baez and Sujeeva Setunge (2021). "A new technology of transforming recycled glass waste to construction components." Construction and Building Materials 313: 125539.
    [74] Saedi, Mohammad, Kiachehr Behfarnia and Hamid Soltanian (2019). "The effect of the blaine fineness on the mechanical properties of the alkali-activated slag cement." Journal of Building Engineering 26: 100897.
    [75] Schade, Tim, Frank Bellmann and Bernhard Middendorf (2022). "Quantitative analysis of C-(K)-A-S-H-amount and hydrotalcite phase content in finely ground highly alkali-activated slag/silica fume blended cementitious material." Cement and Concrete Research 153: 106706.
    [76] Sevinç, Ahmet Hayrullah and Muhammed Yasin Durgun (2020). "Properties of high-calcium fly ash-based geopolymer concretes improved with high-silica sources." Construction and Building Materials 261: 120014.
    [77] Shao, Yixin, Thibaut Lefort, Shylesh Moras and Damian Rodriguez (2000). "Studies on concrete containing ground waste glass." Cement and Concrete Research 30(1): 91-100.
    [78] Smolczyk, Heinz-Gunter (1978). "Effect of Chemistry of Slag on Strengths of Blastfurnace Cements." Zement-Kalk-Gips 31(6): 294-296.
    [79] Song, S, D Sohn, HM Jennings and Thomas O Mason (2000). "Hydration of alkali-activated ground granulated blast furnace slag." Journal of Materials Science 35(1): 249-257.
    [80] Song, Sujin and Hamlin M Jennings (1999). "Pore solution chemistry of alkali-activated ground granulated blast-furnace slag." Cement and Concrete Research 29(2): 159-170.
    [81] Soriano, Lourdes, Alba Font, Mauro M Tashima, José Monzó, María Victoria Borrachero and Jordi Payá (2020). "One-part blast furnace slag mortars activated with almond-shell biomass ash: A new 100% waste-based material." Materials Letters 272: 127882.
    [82] Sturm, Patrick, GJG Gluth, HJH Brouwers and H-C Kühne (2016). "Synthesizing one-part geopolymers from rice husk ash." Construction and Building Materials 124: 961-966.
    [83] Sun, Beibei, Guang Ye and Geert de Schutter (2022). "A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials." Construction and Building Materials 326: 126843.
    [84] Sun, Wei, Yun-sheng Zhang, Wei Lin and Zhi-yong Liu (2004). "In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM." Cement and Concrete Research 34(6): 935-940.
    [85] Suwan, Teewara and Mizi Fan (2017). "Effect of manufacturing process on the mechanisms and mechanical properties of fly ash-based geopolymer in ambient curing temperature." Materials and Manufacturing Processes 32(5): 461-467.
    [86] Taveri, G., J. Tousek, E. Bernardo, N. Toniolo, A. R. Boccaccini and I. Dlouhy (2017). "Proving the role of boron in the structure of fly-ash/borosilicate glass based geopolymers." Materials Letters 200: 105-108.
    [87] Thomas, Blessen Skariah (2018). "Green concrete partially comprised of rice husk ash as a supplementary cementitious material–A comprehensive review." Renewable and Sustainable Energy Reviews 82: 3913-3923.
    [88] Tong, Kien T., Raffaele Vinai and Marios N. Soutsos (2018). "Use of Vietnamese rice husk ash for the production of sodium silicate as the activator for alkali-activated binders." Journal of Cleaner Production 201: 272-286.
    [89] Torres-Carrasco, Manuel, A Palomo and Francisca Puertas (2014). "Sodium silicate solutions from dissolution of glass wastes. Statistical analysis." Materiales de construcción.
    [90] Toutanji, H, Norbert Delatte, S Aggoun, R Duval and A Danson (2004). "Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete." Cement and concrete research 34(2): 311-319.
    [91] Ugheoke, Iyenagbe B and Othman Mamat (2012). "A critical assessment and new research directions of rice husk silica processing methods and properties." Maejo International Journal of Science and Technology 6(3): 430.
    [92] Umeda, Junko and Katsuyoshi Kondoh (2010). "High-purification of amorphous silica originated from rice husks by combination of polysaccharide hydrolysis and metallic impurities removal." Industrial Crops and Products 32(3): 539-544.
    [93] van Deventer, Jannie S. J., John L. Provis, Peter Duxson and David G. Brice (2010). "Chemical Research and Climate Change as Drivers in the Commercial Adoption of Alkali Activated Materials." Waste and Biomass Valorization 1(1): 145-155.
    [94] Van Jaarsveld, J. G. S., J. S. J. Van Deventer and L. Lorenzen (1997). "The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications." Minerals Engineering 10(7): 659-669.
    [95] Walkley, B. and J. L. Provis (2019). "Solid-state nuclear magnetic resonance spectroscopy of cements." Materials Today Advances 1: 100007.
    [96] Wang, Kai-tuo, Li-qiu Du, Xue-sen Lv, Yan He and Xue-min Cui (2017). "Preparation of drying powder inorganic polymer cement based on alkali-activated slag technology." Powder Technology 312: 204-209.
    [97] Wang, Shao-Dong (1995). "Alkaline activation of slag."
    [98] Wang, Shao-Dong and Karen L Scrivener (2003). "29Si and 27Al NMR study of alkali-activated slag." Cement and Concrete Research 33(5): 769-774.
    [99] Wang, Shao-Dong, Karen L Scrivener and PL Pratt (1994). "Factors affecting the strength of alkali-activated slag." Cement and Concrete Research 24(6): 1033-1043.
    [100] Wang, Yan-Shuai, Yazan Alrefaei and Jian-Guo Dai (2021). "Roles of hybrid activators in improving the early-age properties of one-part geopolymer pastes." Construction and Building Materials 306.
    [101] Xiao, Rui, Baoshan Huang, Hongyu Zhou, Yuetan Ma and Xi Jiang (2022). "A state-of-the-art review of crushed urban waste glass used in OPC and AAMs (geopolymer): Progress and challenges." Cleaner Materials 4: 100083.
    [102] Xiao, Rui, Yuetan Ma, Xi Jiang, Miaomiao Zhang, Yiyuan Zhang, Yanhai Wang, Baoshan Huang and Qiang He (2020). "Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature." Journal of Cleaner Production 252: 119610.
    [103] Xiao, Rui, Pawel Polaczyk, Miaomiao Zhang, Xi Jiang, Yiyuan Zhang, Baoshan Huang and Wei Hu (2020). "Evaluation of Glass Powder-Based Geopolymer Stabilized Road Bases Containing Recycled Waste Glass Aggregate." Transportation Research Record 2674(1): 22-32.
    [104] Xu, Hua and J. S. J. Van Deventer (2000). "The geopolymerisation of alumino-silicate minerals." International Journal of Mineral Processing 59(3): 247-266.
    [105] Yang, Beomjoo and Jeong Gook Jang (2020). "Environmentally benign production of one-part alkali-activated slag with calcined oyster shell as an activator." Construction and Building Materials 257: 119552.
    [106] Yang, Keun-Hyeok and Jin-Kyu Song (2009). "Workability loss and compressive strength development of cementless mortars activated by combination of sodium silicate and sodium hydroxide." Journal of Materials in Civil Engineering 21(3): 119-127.
    [107] Yang, Keun-Hyeok, Jin-Kyu Song, Ashraf F Ashour and Eun-Taik Lee (2008). "Properties of cementless mortars activated by sodium silicate." Construction and building materials 22(9): 1981-1989.
    [108] Yip, Ch K, GC Lukey and Jannie SJ Van Deventer (2005). "The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation." Cement and Concrete Research 35(9): 1688-1697.
    [109] Yip, Christina K, Grant C Lukey, John L Provis and Jannie SJ Van Deventer (2008). "Effect of calcium silicate sources on geopolymerisation." Cement and Concrete Research 38(4): 554-564.
    [110] Yuvakkumar, R, V Elango, V Rajendran and N Kannan (2014). "High-purity nano silica powder from rice husk using a simple chemical method." Journal of Experimental nanoscience 9(3): 272-281.
    [111] Zhang, Bai, Hong Zhu, Pan Feng and Pu Zhang (2022). "A review on shrinkage-reducing methods and mechanisms of alkali-activated/geopolymer systems: Effects of chemical additives." Journal of Building Engineering 49: 104056.
    [112] Zhang, Hai-Yan, Jian-Cheng Liu and Bo Wu (2021). "Mechanical properties and reaction mechanism of one-part geopolymer mortars." Construction and Building Materials 273: 121973.
    [113] Zheng, Hao, Yan He, Yuqing Zhu, Leping Liu and Xuemin Cui (2021). "Novel procedure of CO 2 capture of the CaO sorbent activator on the reaction of one-part alkali-activated slag." RSC advances 11(21): 12476-12483.
    [114] Zhou, Huanhai, Xuequan Wu, Zhongzi Xu and Mingshu Tang (1993). "Kinetic study on hydration of alkali-activated slag." Cement and Concrete Research 23(6): 1253-1258.
    [115] 林晉賢,「牡蠣殼粉與氫氧化鈉影響碳酸鈉激發爐石粉膠結材工程性質之研究」,營建工程系,國立臺灣科技大學,2022。
    [116] 邱伃安,「鹼激發膠結材料反應機理之研究」,營建工程系,國立臺灣科技大學,2016。
    [117] 孫家瑛、諸培南與吳初航,「礦渣在鹼性溶液激發下的水化機理探討」,矽酸鹽通報,第6卷,第16-25頁,1988。
    [118] 陳冠宇,「鹼激發爐石基膠體配比因子對其工程性質影響之研究」,營建工程系,國立臺灣科技大學,2010。
    [119] 陳柏翰,「組成成分影響鹼激發無機聚合物 凝結時間與硬固性質之探討」,營建工程系,國立臺灣科技大學,2020。
    [120] 陳振中,「固態核磁共振光譜學簡介」,科儀新知,第二十八卷,第三期,第42-49頁,2006。
    [121] 鄭大偉,「無機聚合技術的發展應用及回顧」,2010。

    無法下載圖示 全文公開日期 2025/09/21 (校內網路)
    全文公開日期 2025/09/21 (校外網路)
    全文公開日期 2025/09/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE