簡易檢索 / 詳目顯示

研究生: FERIYONIKA FERIYONIKA
FERIYONIKA - FERIYONIKA
論文名稱: Intelligent Computation Applied in Optimization of Processing Parameters and Control System
Intelligent Computation Applied in Optimization of Processing Parameters and Control System
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
張嘉德
Chia-Der Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 106
外文關鍵詞: intelligent computation, sliding mode control.
相關次數: 點閱:311下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • This study investigates the effectiveness of intelligent computation applied in optimization of processing parameters and control system. In first part, multiple qualities of solar collector are optimized by applying particle swarm optimization and genetic algorithm. Together with Taguchi experiment method and response surface methodology, the proposed method uses input parameters (melt temperature, mold temperature, packing pressure, and injection speed) as search area and the outputs (ratio of power efficiency and % error of groove filling ratio) as optimized targets. In second part, together with Taguchi method and response surface methodology, particle swarm optimization and genetic algorithm were applied to find optimal qualities of organic cotton open-end spun yarn. The input parameters (feed speed, winding speed, and rotor speed) are searched to find optimal quality of strength, unevenness, imperfection/km, and hairiness. In this part artificial neural network was also applied due to variation of optimization results. In last part, together with sliding mode control, fuzzy logic was applied to control injection velocity in injection molding process. In this control method, fuzzy logic was aimed to decrease chattering phenomena caused by sliding mode and overcome variable uncertainties while sliding mode control was aimed to cover disturbances from system dynamic. The results show that with optimal combination of parameters (270 0C, 100 0C, 1040 bar, and 60 mm/s for melt temperature, mold temperature, packing pressure, and injection speed, respectively), high ratio of power efficiency and low % error of groove filling ratio were derived. For second part, with optimal combination of parameters (0.33496 m/min, 34.99 m/min, and 80,144 rpm for feed speed, winding speed, and rotor speed, respectively), high strength quality and low unevenness, imperfection/km, and hairiness were derived. The result of last part shows that fuzzy sliding mode control can follow set point profile with small error. In this part, fuzzy control not only can decrease chattering phenomena but also make the error smaller than using sliding mode control alone.

    Abstract ……………………………….……………………………………………….………… I Acknowlegments …..………………….………………………….………………….………… III List of contents ………………………….……………………………………….…………..… IV List of figures ………………………………..……………………………..…………………. VII List of tables ……………………………………..…………………….…………………..….... X Chapter 1. Introduction ……..……..……..……..........…..……..……..……..……..……..…….. 1 1.1 Research motivation ……..……..……..……...…..……..……..……..……..……..…….. 1 1.2 Research objectives ……..……..……..……..……..……….....……..………..…..…..… 1 1.3 Literature review …..…..……..……..……..……..……..……..………....……..……..… 2 1.4 Overview of thesis …..…..……..…..……..……..…..…..……..………....…..……...….. 5 Chapter 2. Concept and principle of injection molding machine, open-end spinning, and injection velocity ..…..……...……....…..….....…..……..……....…….. ..…..….. 7 2.1 Injection molding machine …………………………………………………………….... 7 2.1.1. Components of injection molding machine …..……..…………..……..……….. 7 2.1.2. Injection molding phase …..……..……..……..……..……..…………..……..…. 9 2.2 Open-end spinning ……..……..……..……………..……..……..……..……..…..……. 11 2.2.1. Principle of open-end spinning ……..…….…..……..………….……..……..… 11 2.2.2. Rotor spinning …..……..……..……..……..……...………....……..……..…… 11 2.3 Injection velocity . …..……..……..……..….…………..………....……..……..……... 13 Chapter 3. Research methodology .. …..……..…………..……..……..…..…………..……..… 15 3.1 Methods . …..……..……..……..……..……..……..……..………….……..………..…. 15 3.1.1. Taguchi design of experiment and analysis of variance . …..……..……….....…. 15 3.1.1.1. Orthogonal array …..……..……..……..……..….…..……..……...…….… 15 3.1.1.2. Signal to noise-ratio (SN-Ratio) …..……..….…..……..………….……… 15 3.1.1.3. Analysis of variance …..……..……..……...……..……..………....……… 16 3.1.2. Response surface methodology ……………….……………………...………… 17 3.1.3. Particle swarm optimization …………………………………………..………… 18 3.1.4. Genetic algorithm …………………………………………………………..…… 21 3.1.5. Artificial neural network …………………………………………..……..…….. 21 3.1.6. Fuzzy logic ……………………………………………………………….……... 25 3.1.7. Sliding mode control …………………….………………………………..…….. 26 3.2 Experiment setup ………………………………………………………..……………... 28 3.2.1. Solar collector …………….……………………………………………...…….. 28 3.2.2. Open-end spinning ……………………………………………..…………….... 30 3.3 Proposed integrated approach for optimization of processing parameters …..............… 33 3.4 Fuzzy sliding mode controller for controlling injection velocity ……………………… 35 Chapter 4. Result and discussion ……………………………..……………………………..… 36 4.1. Solar collector ……………………………………………………………………...… 36 4.1.1. Experiment and analysis results ………………………………………….......… 36 4.1.1.a. Taguchi experiment results …………………………………….……..…... 36 4.1.1.b. Response surface methodology result ………………………………...….. 38 4.1.1.c. Genetic algorithm result ……………………………………………...…… 38 4.1.1.d. Particle swarm optimization result …………………………………...…… 40 4.1.2. Discussion ……………………………………………………………………... 41 4.1.2.a. Analysis of variance and main effect analysis ………………………..……41 4.1.2.b. Optimal parameters …………………………………………………..…… 44 4.1.2.c. Confirmation experiment ……………………………………………….... 47 4.2. Open-end spun yarn ………………………………………………….……………….. 48 4.2.1. Experiment results …………………………………………….….…………..... 48 4.2.1.a. Taguchi experiment result …………………………….…….…………….. 48 4.2.1.b. Response surface methodology result …………………………………….. 48 4.2.1.c. Genetic algorithm result ………………………………………………….. 49 4.2.1.d. Particle swarm optimization result ……………………………………..…. 50 4.2.2. Discussion …………………………………………………………………...… 51 4.2.2.a. Taguchi experiment and response surface methodology ……………….… 51 4.2.2.b. Parameter optimization using GA and PSO ……………………………… 54 4.2.2.c. ANN based Taguchi method and RSM (NN-TRSM) ….………………… 56 4.3 Injection velocity control using fuzzy sliding mode control (FSMC)…………….....… 62 4.3.1. Sliding mode control (SMC) ………………..………………………………….. 62 4.3.2. Fuzzy sliding mode control (FSMC) …..…………………………………….... 68 Chapter 5. Conclusion ……………………………………….………………………………… 71 References…………………………………………………………………………………..……72 Appendix A …………………………………………………………………………………….. 76 Appendix B …………………………………………………………………………………….. 77 Appendix C …………………………………………………………………………………….. 82

    [1]. Yang, R.H., Wang, S.Y., “ A linear dynamic model for rotor-spun composite yarn spinning process,” Journal of Physics: Conference Series, Vol. 96, pp. 012039 (2008).

    [2]. Cheng, K.B., Murray, R. , “Effects of spinning conditions on structure and properties of open-end cover-spun yarns,” Textile Research Journal, Vol. 70, No. 8, pp. 690-695 (2000).

    [3]. Pouresfandiari, F., Fushimi, S., Sakaguchi, A., Saito, H., Toriumi, K., Nishimatsu, T., Shimizu, Y., Shirai, H., Matsumoto, Y.I., Gong, H., “Spinning conditions and characteristics of open-end rotor spun hybrid yarns,” Textile Research Journal; Vol. 72, No. 1, pp. 61-70 (2002).

    [4]. Matsumoto, Y.I., Fushimi, S., Sakaguchi, A., Toriumi, K., Nishimatsu, T., Shimizu, Y., Gong, H., “ Twisting mechanisms of open-end rotor spun hybrid yarns,” Textile Research Journal, Vol. 72, No. 8, pp. 735-740 (2002).

    [5]. Matsumoto, Y.I., Saito, H., Toriumi, K., Morooka, H., Harakawa, K., “ Twist level of triplet spun silk yarn,” Journal of Sericultural Science of Japan; Vol. 66, No. 5, pp. 323-329 (1997).

    [6]. Hung, Y.T., Su, G.D., “Cylindrically symmetric fresnel lens for high concentration photovoltaic,“ Proc. of SPIE, Vol. 7423, pp. 74230W (2009).

    [7]. Chemisana, D., Ibanez, M., Barrau, J., “Comparison of Fresnel Concentrator for Building Integrated Photovoltaics,” Energi Conversion and Management, Vol. 51, No. 7, pp.1079-1084 (2009).

    [8]. Yeh, N., “Analysis of Spectrum Distribution and Optical Losses under Fresnel Lenses,” Renewable and Sustainable Energy Reviews,Vol. 14, pp. 2926-2935 (2010).

    [9]. Zamora, P., Benitez, P., Minano, J.C., Mohedano, R., Cvetkovic, A., Buljan, M., Chaves, J., “High Performance Fresnel-based Photovoltaic Concentrator,” Proc. of SPIE, Vol. 7785, pp. 778504 (2010).

    [10]. Sha, B., Dimov, S., Griffiths, C., Packianather, M.S., “Investigation of micro-injectiom moulding:Factors affecting the replication quality,” Journal of Materials Processing Technology, Vol. 183, pp. 284-296 (2007).

    [11]. Huang, M.S., Li, C.J., Yu, J.C., Huang, Y.M., Hsieh, L.C., “Robust parameter design of micro-injection molded gears using a LIGA-like fabricated mold insert,” Journal of Materials Processing Technology,; Vol. 209, pp. 5890-5701 (2009).

    [12]. Kalima, V., Pietarinen, J., Siitonen, S., Immaonen, J., Suvanto, M., Kuittinen, M., Monkkonen, K., Pakkanen, T.T., “Transparent thermoplastics: Replication of diffractive optical elements using micro-injection molding,” Optical Materials, Vol. 30, pp. 285-291(2007).

    [13]. Dubay, R., Pramujati, B., Han, J., Strohmaier, F., “An Investigation on the Application of Predictive control for controlling screw position and velocity on an injection molding machine,” Polymer Engineering and Science, Wiley InterScience (2007).

    [14]. Agrawal, A.R., Pandelilis, I.O., Pencht, M., “Injection-molding process control - A review,“ Polym. Eng. Sci; Vol. 27, pp. 1345 (1987).

    [15]. Rosato, D.V., Rosato, M.G., Injection Molding Handbook, 3rd ed., Kluwer, Boston (2000).

    [16]. Hou, T.H., Su, C.H., Liu W.L., Liu, W.L., “Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm,” Powder Technology, Vol. 173, pp. 153-162 (2007).

    [17]. Reh, L., Ye, H., “ Neural networks for on-line prediction and optimization of circulating fluidized bed process steps,” Powder Technology , Vol. 111, No. 1-2, pp. 123-131 (2000).

    [18]. Kwak, J.S., ”Application of Taguchi and Response surface methodologies for geometric error in surface grinding process,” International Journal of Machine Tools and Manufacture, Vol. 45, No. 3, pp. 327-334 (2005).

    [19]. Zhou, J.G., Herscovici, D., Chen, C.C., “ Parametric process optimization to improve the accuracy of rapid prototyped stereo lithography parts,” International Journal of Machine Tools and Manufacture, Vol. 40, No. 3, pp. 363-379 (2000).

    [20]. Kurtaran, H., Erzurumlu, T., “ Efficient warpage optimization of thin shell plastic parts using response surface methodology and genetic algorithm,” International Journal of Advanced Manufacturing Technology, Vol. 27, No. 5-6, pp. 468-472 (2006).

    [21]. Kuo, C.F.J., Wei, H.J., Huang, C.C., Su, T.L., “Processing parameters optimization of multiple quality characteristics of open-end rotor spinning process for bamboo charcoal and CVC blended fibers,”Fiber. Polym, Vol. 11, pp. 891-898 (2010).

    [22]. Zhou, J.G., Herscovici, D., Chen C.C., “ Parametric process optimization to improve the accuracy of rapid prototyped stereolithography parts,” International Journal of Machine Tools and Manufacture, Vol. 40, No. 3, pp. 363-379 (2000).

    [23]. Huang, S.N., Tan, K.K., Lee, T. H., “Neural-network-based predictive learning control of ram velocity in injection molding,“ IEEE Transaction on Systems, Man, and Cybernetics, Vol. 34, No. 3, pp.363-368 (2004).

    [24]. Potsch, Michaeli,W., Injection Molding:An Introduction, Hanser Gardner Publications, Inc., Cincinnati (1995).

    [25]. Michaeli, Greif, Kretzschmar, Kaufmann, Bertuleti, Training in Injection Molding, Hanser Gardner Publications, Inc., Cincinnati (1992).

    [26]. Beaumont, J.P., Nagel, R., Sherman, R., Successful Injection Molding: Process, Design, and Simulation, Hanser Gardner Publication, Inc., Cincinnati (2002).

    [27]. Oxtoby, E., Spun Yarn Technology, Butterworth & Co (Publishers) Ltd, United Kingdom, (1987).

    [28]. The Principle of Rotor Spinning [online] available: http://www.rieter.com/de/riki pedia/articles/rotor-spinning/the-importance-of-rotor-spinning/the-principle-of-rotor-spinning/, May 28, 2011.

    [29]. Agrawal, A.R., Pandelidis, I.O., “Optimal anticipatory control of ram velocity in injection molding,” Polym. Eng. Sci , Vol. 28, pp. 157-163 (1988).

    [30]. Roy, R., A Premier on the Taguchi Method, Society of Manufacturing Engineering, Michigan (1990).

    [31]. Gunaraj, V., Murugan, N., “ Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes,“ Journal of Materials Processing Technology , Vol. 88, No. 1, pp. 266-275 (1999).

    [32]. Rania, H., Babak C., Olivier, D.W., “A comparison of particle swarm optimization and genetic algorithm,” American Institute of Aeronautics and Astronautics (2004).

    [33]. Cleck, M., Particle Swarm Optimization, ISTE, London (2006).

    [34]. Genetic Algorithm. [Online] Available: http://en.wikipedia.org/wiki/Genetic_algorithm, February 13th, 2011.

    [35]. Kusumadewi, S., Building artificial neural network using matlab and excel link, Graha Ilmu Publication, Yogyakarta (2004).

    [36]. Nurhadi, H., “Intelligent controller design for high-precisely mechanical systems and manufacturing,” PhD dissertation, National Taiwan University of Science and Technology (2010).

    [37]. Wang, K.K., Injection Molding modeling, Progress report, Cornell University, Ithaca, NY (1984).\

    [38]. Lan, W.L., “A study on optimizing multiple qualities of organic cotton open-end spun yarn with AHP,” Student assignments, Department of Materials Science and Engineering, National Taiwan University of Science and Technology (2010).

    QR CODE