簡易檢索 / 詳目顯示

研究生: 蔡佑健
Yu-Jian Tsai
論文名稱: 矽基生醫玻璃與磷基生醫玻璃的合成與分析
Synthesis and analysis of silicate-based and phosphate-based bioactive glasses
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 施劭儒
Shao-Ju Shih
王丞浩
Chen-Hao Wang
周育任
Yu-Jen Chou
林穎志
Ying-Zhi Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 89
中文關鍵詞: 磷基生醫玻璃傷口敷料密度泛函理論噴霧熱裂解法
外文關鍵詞: Phosphate-based bioactive glass, Wound dressings, Density functional theory, Spray pyrolysis
相關次數: 點閱:33下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前罹患糖尿病人口日趨增加,傷口感染所需之醫療需求提高,能防止傷口感染並促進傷口癒合之敷料能改善以上問題。在傷口敷料中生醫玻璃作為可吸收性生醫陶瓷,其中磷基生醫玻璃具有良好降解速率,經由離子釋放加速傷口復原,在製作傷口敷料應用上具有潛力。製程方面中噴霧熱裂解法具有控制產物比例、顆粒及形貌的優勢,本次研究利用此法製備矽基與磷基生醫玻璃粉末。
    本研究內容分為三個部分,第一部分由不同前驅液濃度製備出76S 矽基生醫玻璃粉末,第二部分由不同成分與鍛燒溫度製備出14P、24P和34P磷基生醫玻璃粉末,再分別對晶體結構、顆粒大小與形貌、比表面積和降解性質進行分析與探討。第三部分則是建構出76S、14P、24P和34P模型,探討不同成分比例之結構與性質差異。在第一部分的分析中,平均粒徑隨著前驅液濃度提高而上升,同時比表面積下降,降解速率減緩。第二部分,結晶溫度隨著磷含量增加而降低,磷含量成分增加使得磷基生醫玻璃的降解速率提升。第三部分,模擬結構中觀察到增加磷的比例使非架橋氧的比例增加,更能限制結構間的交聯,增加生物降解性的能力。因此未來將根據患部的需求來調控生醫玻璃的性質,若需要為具有高穩定性的生醫玻璃選擇前驅液為0.3或0.5 M的76S BG,若尋求具有快速降解性質的生醫玻璃則選擇24P或34P的磷基生醫玻璃。


    The number of people with diabetes is increasing, leading to a higher demand for medical care for wound infections. Dressings that can prevent wound infections and promote healing can effectively address these issues. Among various wound dressings, bioactive glass, as an absorbable bioceramic, shows significant potential. In particular, phosphate-based bioactive glass, with its excellent degradation rate, can accelerate wound healing through ion release, making it highly promising for wound dressing applications. Spray pyrolysis offers advantages in controlling product composition, particle size and morphology. This study uses this method to prepare silica-based and phosphate-based bioactive glass powders.
    The study is divided into three parts: the first part involves preparing 76S silica-based bioactive glass powders with various precursor concentrations; the second part involves preparing 14P, 24P, and 34P phosphate-based bioactive glass powders with various compositions and calcination temperatures, followed by analysis of their crystal structure, particle size and morphology, specific surface area and degradation properties. The third part constructs models of 76S, 14P, 24P, and 34P to explore the structural and properties based on various compositions. In the first part, the analysis shows that the average particle size increases with the precursor concentration, while the specific surface area decreases, and the degradation rate slows down. The second part reveals that with increased phosphorus content, the crystallization temperature decreases, enhancing the degradation rate of the phosphate-based bioactive glass. The third part's simulated structures indicate that increasing the phosphorus ratio increases the proportion of non-bridging oxygen, limiting cross-linking between structures and enhancing biodegradability. Therefore, in the future, the properties of bioactive glass will be controlled according to the needs of the affected area. If needs high stability bioactive glass, select 76S BG with a precursor solution of 0.3M or 0.5M. If needs high degradation rate, select 24P or 34P phosphate-based bioactive glasses.

    摘要 I Abstract III 致謝 IV 目錄 V 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 5 第二章 文獻回顧 8 2.1 生醫陶瓷 8 2.1.1 近惰性生醫陶瓷 9 2.1.2 多孔生醫陶瓷 10 2.1.3 生物活性生醫陶瓷 11 2.1.4 可吸收性生醫陶瓷 12 2.2 生醫玻璃 13 2.2.1 矽基生醫玻璃 14 2.2.2 硼基生醫玻璃 15 2.2.3 磷基生醫玻璃 16 2.3 磷基生醫玻璃 18 2.3.1結構 18 2.3.2 性質 20 2.3.3 應用 22 2.4 生醫玻璃合成方法 23 2.4.1 熔融淬火法 23 2.4.2 溶膠凝膠法 25 2.4.3 噴霧熱裂解法 26 2.4.4 噴霧乾燥法 28 第三章 實驗目的與方法 30 3.1 實驗設計 30 3.2 實驗原料 34 3.3. 實驗儀器設備 35 3.4 生醫玻璃粉體製備 36 3.5 樣品性質及分析方法 39 3.5.1 X射線繞射儀 39 3.5.2 掃描式電子顯微鏡 40 3.5.3 氮氣吸/脫附分析儀 41 3.5.4 體外生物降解性試驗 42 3.5.5 體外生物相容性試驗 43 3.5.6 DFT 模擬 44 第四章 實驗結果 45 4.1 前驅液濃度0.1M、0.3M、0.5M的76S BG粉末之合成與分析 45 4.1.1 晶相分析 46 4.1.2 表面形貌分析 47 4.1.3 粒徑尺寸分析 49 4.1.4 組成分析 51 4.1.5 比表面積分析 53 4.1.6 生物降解性分析 54 4.1.7 體外生物相容性分析 56 4.2 14P、24P和34P BG粉末之合成與分析 58 4.2.1 晶相與粉末色澤分析 59 4.2.2 表面形貌分析 61 4.2.3 粒徑尺寸分析 63 4.2.4 組成分析 64 4.2.5 比表面積分析 66 4.2.6 生物降解性分析 67 4.2.7 體外生物相容性分析 68 4.3 76S, 14P, 24P, 34P BG 之DFT模擬 69 4.3.1結構模擬分析 69 4.3.2徑向分佈函數模擬分析 71 第五章 結果與討論 73 5.1 前驅液濃度0.1M、0.3M、0.5M 76S BG 的降解性與比表面積探討 73 5.2 前驅液濃度0.1M、0.3M、0.5M 76S BG 的粒徑與性質探討 75 5.3 14P, 24P, 34P BG 的結晶性探討 77 5.4 14P, 24P, 34P BG 的降解性與非架橋氧數量探討 79 第六章 結論 81 第七章 未來工作 82 參考文獻 83

    [1] J.E. Shaw, R.A. Sicree, P.Z. Zimmet, Global estimates of the prevalence of diabetes for 2010 and 2030, Diabetes Research and Clinical Practice, 87 (2010) 4-14.
    [2] Lindsey Korbel, John David Spencer, Diabetes mellitus and infection: an evaluation of hospital utilization and management costs in the United States, Journal of Diabetes and Its Complications, 29 (2015) 192–195.
    [3] Cristina A. Taulescu1 Marian Taulescu, Maria Suciu, Liviu C. Bolunduț, Petru P˘așcuța, Corina Toma Andrada Urda-Cîmpean, Alexandra Dreanca, Marin Șenil˘a, Oana Cadar, R˘azvan Ștefan, A novel therapeutic phosphate-based glass improves full-thicknesswound healing in a rat model, Biotechnology Journal, 16 (2021) 2100031.
    [4] Saeid Kargozara, Sepideh Hamzehloub, Francesco Bainod, Can bioactive glasses be useful to accelerate the healing of epithelial tissues? Materials Science & Engineering C, 97 (2019) 1009–1020.
    [5] Shiva Naseri, William C. Lepry, Showan N. Nazhat, Bioactive glasses in wound healing: hope or hype? Journal of Materials Chemistry B, 5 (2017) 6167—6174.
    [6] Steven B. Jung, Bioactive Borate Glasses, Bio‐Glasses: An Introduction (2012) 75-95.
    [7] Yu-Jen Chou, Konstantin Borisenko, Shao-Ju Shih, Angus Kirkland, Studies of the structure of spray pyrolysed bioactive glasses using electron diffraction and DFT simulations, European Microscopy Congress, Proceedings Materials Science Structural materials, defects and phase transformations (2016) 325-326.
    [8] SM Best, AE Porter, ES Thian, J Huang, Bioceramics: Past, present and for the future, Journal of the European Ceramic Society, 28 (2008) 1319-1327.
    [9] H Gul, M Khan, AS Khan, Bioceramics: Types and clinical applications, Handbook of Ionic Substituted Hydroxyapatites (2020) 53-83.
    [10] Hench L L 1993 An introduction to bioceramics, (world scientific).
    [11] Larry L. Hench, Bioceramics: From Concept to Clinic, Journal of the American Ceramic Society, 74 (1991) 1487-1510.
    [12] Pawan Kumar, Brijnandan S Dehiya, Anil Sindhu, Bioceramics for Hard Tissue Engineering Applications: A Review, International Journal of Applied Engineering Research, 13 (2008) 2744-2752.
    [13] Mahdi Dehestani, Dmitry Zemlyanov, Erik Adolfsson, Lia A. Stanciu , Improving bioactivity of inert bioceramics by a novel Mg-incorporated solution treatment, Applied Surface Science, 425 (2017) 564-575.
    [14] M. Neo, S. Kotani, T. Nakamura, T. Yamamuro, C. Ohtsuki, T. Kokubo, Y. Bando, A comparative study of ultrastructures of the interfaces between four kinds of surface-active ceramic and bone, Journal of Biomedical Materials Research, 26 (1992) 1419-1432.
    [15] Bonfield, W, Designing porous scaffolds for tissue engineering, Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sciences, 364 (2006) 227-232.
    [16] DM Liu, Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramic, Ceramics International, 23 (1997) 135-139.
    [17] S Chen, Y Shi, Y Luo, J Ma, Layer-by-layer coated porous 3D printed hydroxyapatite composite scaffolds for controlled drug delivery, Colloids and Surfaces B: Biointerfaces, 179 (2019) 121-127.
    [18] H Jodati, B Yılmaz, Z Evis, A review of bioceramic porous scaffolds for hard tissue applications: Effects of Structural Features, 46 (2020) 15725-15739.
    [19] KY Lee, M Park, HM Kim, YJ Lim, HJ Chun, H Kim, SH Moon, Ceramic bioactivity: progresses, challenges and perspectives, Biomedical Materials, , (2006) R31-R39.
    [20] M Manzano, M Vallet-Regí, Revisiting bioceramics: Bone regenerative and local drug delivery systems, Progress in Solid State Chemistry, 40 (2012) 17-30.
    [21] H Pan, X Zhao, BW Darvell, WW Lu, Apatite-formation ability–predictor of “bioactivity”?, Acta Biomaterialia, 6 (2010) 4181-4188.
    [22] W. Höland, W. Vogel, K. Naumann, J. Gummel, Interface reactions between machinable bioactive glass-ceramics and bone, Journal of Biomedical Materials Research, 19 (1985) 303-312.
    [23] PY Hsu, HC Kuo, ML Syu, WH Tuan, PL Lai, A head-to-head comparison of the degradation rate of resorbable bioceramics, Materials Science and Engineering: C, 106 (2020) 110175.
    [24] KJL Burg, S Porter, JF Kellam, Biomaterial Developments for Bone Tissue Engineering, Biomaterials, 21 (2000) 2347-2359.
    [25] C. P. A. T. Klein, A. A. Driessen, and K. de Groot, Biodegradation behavior of various calcium phosphate materials in bone tissue , Journal of Biomedical Materials Research, 17 (1983) 769-784.
    [26] M Nilsson, JS Wang, L Wielanek, KE Tanner, L Lidgren, Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute, The Journal of Bone & Joint Surgery British Volume, 86 (2004) 120-125.
    [27] Daculsi Guy, Seris Elodie, Christian Verner and Said Kimakhe, Clinical Performance of Moldable Bioceramics and resorbable membrane for boneand mucosa regeneration in maxillofacial surgery, Biomaterials and Medical Applications, 1 (2017) 1000109.
    [28] J. Wiltfang, H. A. Merten, K. A. Schlegel, S. Schultze-Mosgau, F. R. Kloss, S. Rupprecht, P. Kessler, Degradation Characteristics of α and β Tri-Calcium-Phosphate (TCP) in Minipigs, degradation characteristics, 216 (2002) 115-121.
    [29] R. Li, A. E. Clark, L. L. Hench, An investigation of bioactive glass powders by sol-gel processing, Journal of Applied Biomaterials, 2 (1991) 231-239.
    [30] S.M. Ahmadi, A. Behnamghader, A.A. sefnejaad, Sol-gel synthesis, characterization and in vitro evaluation of SiO2-CaO-P2O5 bioactive glass nanoparticles with various CaO/P2O5 ratios, Digest Journal of Nanomaterials and Biostructures, 12 (2017) 847-860.
    [31] AE Clark Jr, CG Pantano Jr, LL Hench, Auger spectroscopic analysis of bioglass corrosion films, Journal of the American Ceramic Society, 59 (1976) 37-39.
    [32] DM Sanders, LL Hench, Mechanisms of glass corrosion, Journal of the American Ceramic Society, 56 (1973) 373-377.
    [33] Adam Shearer a, Maziar Montazerian b, John C. Mauro, Modern definition of bioactive glasses and glass-ceramics, Journal of Non-Crystalline Solids, 608 (2023) 122218.
    [34] DS Brauer, Bioactive glasses—structure and properties, Angewandte Chemie International Edition,54 (2015) 4160-4181.
    [35] I Elgayar, AE Aliev, AR Boccaccini, RG Hill, Structural analysis of bioactive glasses, Journal of Non-Crystalline Solids, 351 (2005) 173-183.
    [36] N Al-Harbi, H Mohammed, Y Al-Hadeethi, AS Bakry, A Umar, MA Hussein, MA Abbassy, KGVaidya, G Al Berakdar, EM Mkawi, M Nune, Silica-based bioactive glasses and their applications in hard tissue regeneration: A review, Pharmaceuticals, 14 (2021) 75.
    [37] I Izquierdo-Barba, L Ruiz-González, JC Doadrio, JM González-Calbet, M Vallet-Regí, Tissue regeneration: A new property of mesoporous materials, Solid State Sciences, 7 (2005) 983-989.
    [38] C Wu, J Chang, Mesoporous bioactive glasses: Structure characteristics, drug/growth factor delivery and bone regeneration application, Interface Focus, 2 (2012) 292-306.
    [39] X Liu, MN Rahaman, DE Day, Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid, Journal of Materials Science: Materials in Medicine, 24 (2013) 583-595.
    [40] A Yao, D Wang, W Huang, Q Fu, MN Rahaman, DE Day, In Vitro Bioactive Characteristics of Borate‐Based Glasses with Controllable Degradation Behavior, Journal of the American Ceramic Society, 90 (2007) 303-306.
    [41] Mohamed N. Rahaman, Delbert E. Day, B. Sonny Bal, Qiang Fu, Steven B. Jung, Lynda F. Bonewald, Antoni P. Tomsia. Bioactive glass in tissue engineering, Acta Biomaterialia, 7 (2011) 2355–2373.
    [42] S Sengupta, M Michalek, L Liverani, P Švančárek, AR Boccaccini, D Galusek, Preparation and characterization of sintered bioactive borate glass tape, Materials Letters, 282 (2021) 128843.
    [43] WC Lepry, SN Nazhat, Highly bioactive sol-gel-derived borate glasses, Chemistry of Materials, 27 (2015) 4821-4831.
    [44] K Schuhladen, L Stich, J Schmidt, A Steinkasserer, AR Boccaccini, E Zinser, Cu, Zn doped borate bioactive glasses: Antibacterial efficacy and dose-dependent in vitro modulation of murine dendritic cells, Biomaterials science,8 (2020) 2143-2155.
    [45] S Naseri, WC Lepry, SN Nazhat, Bioactive glasses in wound healing: hope or hype? Journal of Materials Chemistry B, 5 (2017) 6167-6174.
    [46] D Ege, K Zheng, AR Boccaccini Borate bioactive glasses (BBG): bone regeneration, wound healing applications, and future directions , ACS Applied Bio Materials, 5 (2022) 3608-3622
    [47] Delia S. Brauer, Phosphate Glasses, Bio‐Glasses: An Introduction (2012) 45-64.
    [48] JC Knowles, Phosphate based glasses for biomedical applications, Journal of Materials Chemistry, 13 (2003) 2395-2401.
    [49] U Patel, RM Moss, KMZ Hossain, AR Kennedy, ER Barney, I Ahmed, AC Hannon, Structural and physico-chemical analysis of calcium/strontium substituted, near-invert phosphate based glasses for biomedical applications, Acta biomaterialia, 60 (2017) 109-127.
    [50] AG Avent, CN Carpenter, JD Smith, DM Healy, T Gilchrist, Journal of non-crystalline solids, The dissolution of silver–sodium–calcium–phosphate glasses for the control of urinary tract infections, 328 (2003) 31-39.
    [51] EA Abou Neel, DM Pickup, SP Valappil, RJ Newport, JC Knowles, Bioactive functional materials: a perspective on phosphate-based glasses, Journal of Materials Chemistry, 19 (2009) 690-701.
    [52] JC Knowles, Phosphate based glasses for biomedical applications, Journal of Materials Chemistry, 13 (2003) 2395-2401.
    [53] AG Avent, CN Carpenter, JD Smith, DM Healy, T Gilchrist, The dissolution of silver–sodium–calcium–phosphate glasses for the control of urinary tract infections, Journal of Non-Crystalline Solids, 328 (2003) 31-39.
    [54] M Schumacher, P Habibovic, S Van Rijt, Mesoporous bioactive glass composition effects on degradation and bioactivity, Bioactive Materials,6 (2021) 1921-1931.
    [55] EA Abou Neel, T Mizoguchi, M Ito, M Bitar, V Salih, JC Knowles, In vitro bioactivity and gene expression by cells cultured on titanium dioxide doped phosphate-based glasses, Biomaterials, 28 (2007) 2967-2977.
    [56] EA Abou Neel, I Ahmed, J Pratten, SN Nazhat, JC Knowles, Characterisation of antibacterial copper releasing degradable phosphate glass fibres, Biomaterials, 26 (2005) 2247-2254.
    [57] I Ahmed, CA Collins, MP Lewis, I Olsen, JC Knowles, Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering, Biomaterials, 25 (2004) 3223-3232.
    [58] AM Mulligan, M Wilson, JC Knowles, The effect of increasing copper content in phosphate-based glasses on biofilms of Streptococcus sanguis, Biomaterials, 24 (2003) 1797-1807.
    [59] TN O'Sullivan, JD Smith, JD Thomas, C Drake, Copper molluscicides for control of schistosomiasis. 2. Copper phosphate controlled release glass, Environmental science & technology, 25 (1991) 1088-1091.
    [60] Agata Łapa, Mark Cresswell, Ian Campbell, Phil Jackson, Wolfgang H. Goldmann, Rainer Detsch, Aldo R. Boccaccini, Gallium- and Cerium-Doped Phosphate Glasses with Antibacterial Properties for Medical Applications, 22 (2020) 1901577.
    [61] LL Hench, The story of Bioglass®, Journal of Materials Science: Materials in Medicine,17 (2006) 967-978.
    [62] R Li, AE Clark, LL Hench, An investigation of bioactive glass powders by sol‐gel processing, Journal of Applied Biomaterials, 2 (1991) 31-39.
    [63] BAE Ben-Arfa, RC Pullar, A comparison of bioactive glass scaffolds fabricated by robocasting from powders made by sol–gel and melt-quenching methods, Processes, 8 (2020) 615.
    [64] YJ Chou, CW Hsiao, NT Tsou, MH Wu, SJ Shih, Preparation and in vitro bioactivity of micron-sized bioactive glass particles using spray drying method, Applied Sciences,9 (2018) 19.
    [65] G Kaur, OP Pandey, K Singh, D Homa, B Scott, G Pickrell, A review of bioactive glasses: their structure, properties, fabrication and apatite formation, Journal of Biomedical Materials Research Part A, 102 (2013) 254-274.
    [66] Z Khurshid, S Husain, H Alotaibi, R Rehman M S. Zafar , I Farooq , A S. Khan, Novel techniques of scaffold fabrication for bioactive glasses, Biomedical, Therapeutic and Clinical Applications of Bioactive Glasses (2019) 497-519.
    [67] G Kaur, G Pickrell, N Sriranganathan, V Kumar, D Homa, Review and the state of the art: sol–gel and melt quenched bioactive glasses for tissue engineering, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104 (2015) 1248-1275.
    [68] M. Ebelmen, Recherches sur les combinaisons des acides borique et silicique avec les ethers, Annales de Chimie et de Physique 116 (1846) 129-166.
    [69] B Lei, X Chen, Y Wang, N Zhao, C Du, L Zhang, Acetic acid derived mesoporous bioactive glasses with an enhanced in vitro bioactivity, Journal of non-crystalline solids, 355 (2009) 2583-2587.
    [70] K Deshmukh, T Kovářík, T Křenek, D Docheva, T Stich, J Pola, Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review, RSC advances, 10 (2020) 33782-33835.
    [71] AB Workie, EM Sefene, Ion-doped mesoporous bioactive glass: Preparation, characterization, and applications using the spray pyrolysis method, RSC advances,12 (2022) 1592-1603.
    [72] GL Messing, SC Zhang, GV. Jayanthi, Ceramic Powder Synthesis by Spray Pyrolysis, Journal of the American Ceramic Society 76 (1993), 2707-2726.
    [73] A Gurav, T Kodas, T Pluym, Y Xiong, Aerosol processing of materials, Aerosol Science and Technology, 19 (1993) 411-452.
    [74] SJ Shih, YJ Chou, CY Chen, CK Lin, One-step synthesis and characterization of nanosized bioactive glass, Journal of Medical and Biological Engineering, 34 (2014) 18-23.
    [75] A Sosnik, KP Seremeta, Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers, Advances in colloid and interface science, 223 (2015) 40-54.
    [76] HE Snyder, D Lechuga-Ballesteros, Spray drying: theory and pharmaceutical applications, Pharmaceutical dosage forms-Tablets (2008) 227-260.
    [77] R Vehring, Pharmaceutical Particle Engineering via Spray Drying, Pharmaceutical research, 25 (2008) 999-1022.
    [78] M Maury, K Murphy, S Kumar, L Shi, G Lee, Effects of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer, European Journal of Pharmaceutics and Biopharmaceutics, 59 (2005) 565-573.
    [79] R. HILL, An alternative view of the degradation of bioglass, Journal of Materials Science Letters, 15 (1996) 1122-1125.
    [80] D Zhao, B Ma, C Wang, Y Chen, The regeneration of HNO3 and MgO via multistep pyrolysis of Mg(NO3)2⋅6H2O and thermodynamic analysis of critical intermediate product, Journal of Thermal Analysis and Calorimetry, 148 (2023) 9047-9061.

    QR CODE