簡易檢索 / 詳目顯示

研究生: KESEVEN LAKSHMANAN
KESEVEN LAKSHMANAN
論文名稱: 用於電化學還原二氧化碳生成多碳產物的原子級電催化劑
Generating multi-carbon products from electrochemical reduction of CO2 by atomic electrocatalyst materials
指導教授: 蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
蔡孟哲
Meng-Che Tsai
口試委員: 蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
蔡孟哲
Meng-Che Tsai
潘俊仁
Chun-Jern Pan
林彥谷
Yan-Gu Lin
鄧熙聖
Hsisheng Teng
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 161
中文關鍵詞: 原子級催化劑多重活性位CO2還原反應C-C耦合多碳產物
外文關鍵詞: Atomic catalyst, multi-active sites, CO2 reduction reaction, C-C coupling, multi-carbon product
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於全球暖化和CO2排放引起的有害環境,迫切需要緩解這種情況,這是目前的當務之急。很明顯地,透過電化學CO2還原是一個有潛力的選擇,可以通過切斷碳循環來減緩CO2軌跡。此外,可以從CO2能量轉換中獲得CO和其他的碳氫產品。電催化劑材料在電化學能量轉換研究中發揮了至關重要的作用,能推動可持續的綠色能源生成和儲存,這可以應對不斷增長的全球能源需求。儘管貴金屬催化劑表現出色,但CO2還原反應(CO2RR)的動力學相當緩慢,因此開發先進的電催化劑材料仍有必要性。該材料應具有穩定的催化活性位點、動態的電子性能、操作耐久性和價格低廉,這對於可再生能源轉換技術來說是一個重要挑戰。
    如今,單原子電催化劑材料因其高的表面能、獨特的電子性能、高表面積和最大的原子利用率而備受矚目。特別是,過渡金屬單原子催化劑成為決定性和有前途的電催化劑,它可以為反應中間體提供動態的電子平台,堅固的催化活性位點。在較高的施加電位下穩定,且成本效益高且豐富。加速基於過渡金屬的原子電催化劑對CO2RR的先進催化性能,探索反應機制、催化活性位點轉變以及其相關的基本性質仍然對設計獨特的原子電催化劑至關重要。然而,獲得具有合適配位環境、足夠金屬載荷和驗證催化活性位點的電子效應的獨特原子催化劑存在巨大的挑戰,這對於CO2RR是不可避免的。
    因此,我們提出了過渡金屬單原子催化活性位點與共存於導電碳通道上的異質原子配位環境結合,用以改善CO2轉換的選擇性。這種設計將提高催化劑性能,實現更好的CO2轉換效率,並在催化活性反應中帶來基礎科學的清晰度。最終,這篇論文的目標是建立高效的電催化劑材料,並通過原位光譜電化學技術對催化活性位點演變、活性位點電子性質和電化學CO2還原過程中的產物反應途徑進行基本研究。
    我們提出的第一個方法是解決Fe單原子催化劑(Fe SAC)對CO2電解的電催化活性和性能的問題。我們展示了一種獨特的單原子配位環境,其中Fe被三個氧原子包圍存在於HOOC-MWCNTs(Fe-n-f-MWCNTs)。顯著的是,Fe SAC是通過離子交換過程實現的,而不是高溫裂解熱處理,此合成方法非常簡便。Fe SAC的內部配位結構為CO2還原過程中的反應中間體提供了動態的催化活性位點,可以生成CO中間體。Fe原子在CO2電解過程中保持+3價態。Fe-(O)3活性位點降低了反應能障,加速電子轉移到COOH和*OCHO中間體,產生CO。MWCNTs上的COOH基團通過靜電力平衡Fe原子。最終,Fe-n-f-MWCNTs催化劑在-0.8 VRHE時對CO2轉換為C2產品的效能優越,達到65%的法拉第效率(FE)。氧協同配位結構對Fe SAC的協同效應產生影響,增強了反應途徑,實現了多電子轉移而不是雙電子轉移。產物的速率表明,Fe SA位點將大量的CO傳遞給HOOC-MWCNTs位點,形成C2產品。
    第二種方法是應對二氧化碳還原反應開發中的挑戰,生產多碳產物,其中穩定的雙活性位點是不可避免的。我們引入了具有Ni和Cu單原子的酞氰分子(phthalocyanine),共同作為雙活性催化位點。這種方法的目的是從第一種方法的模糊機制和性能結果中發現,儘管我們獲得了多碳產物作為主要產物,但第二個催化活性位點尚未被確定。因此,在這種方法中,我們提出了Ni/Cu雙催化活性位點,其中由Ni-Pc和Cu-Pc分子的物理混合過程衍生出了由Ni和Cu原子對組成的雙活性位點催化劑。顯著的是,Ni/Cu雙原子位點催化劑為協同作用的合理性質提供了近距離的兩原子對,觸發C-C偶聚反應,可以產生多碳產物進行CO2RR。Ni/Cu PASC催化CO2RR生成乙醇產物的電化學性能達到了55%的FE,而單獨的Ni-Pc和Cu-Pc僅生成單碳產物。值得注意的是,原位光譜電化學研究顯示,Ni/Cu雙活性位點催化劑的近距離原子對提供了穩定的活性位點,並在CO2RR下具有平衡的電子性質。
    因此,穩定的Ni活性位點促使CO的一致生成,CO的遷移經歷了在Cu位點上形成的CO2中間體的C-C偶聚反應。最終,Ni/Cu雙活性位點催化活性的近距離對表明,兩個Ni和Cu單原子活性位點的和諧趨向於有效的CO2RR產生多碳產物。由於我們在第二種方法中探索的Ni/Cu近距離原子催化劑具有有限的電流密度,影響了多碳產物的產量,這激發了我們開發一種雙金屬單原子集成導電碳支撐催化劑的靈感。因此,第三種方法的目標是建立具有高電流密度的相容異質雙金屬單原子電催化劑。我們合成了Ni和Fe共存的雙金屬單原子峰值催化活性位點,與2D碳通道相關聯。


    Owing to the global warming and noxious ambient caused by CO2 emission need to be alleviate and it is need of the moment. Significantly, the electrochemical CO2 reduction is the impressive choice that pull two weeds with one yank that can mitigate the CO2 trace via cut-off the carbon-cycles. In addition, intermittent feedstock of CO and such a high energy density chemicals of multi-carbon products can acquired from CO2 energy conversion. Electrocatalyst materials have been played pivotal role on electrochemical energy conversion research could advance the sustainable green energy generation and storage that can have challenge the thriving global energy demand. Even though, noble metal catalysts are performed, sluggish kinetics of the CO2 reduction reaction insist to develop an advanced electrocatalyst materials which is should have consists the stable catalytically active sites, dynamic electronic property, operationally durable and inexpensive materials are the considerable threat to the renewable energy conversion technologies perform in fuel cells.
    Nowadays, single-atom electrocatalyst materials are rising star in the electrochemical energy conversion because of their tremendous surface energy, unique electronic property, high surface area, and maximum atom utilization. Especially, transition metal single-atom catalyst becomes decisive and promising electrocatalyst, which can render dynamic electronic platform to the intermediates accessibility, robust catalytic active sites, stable at higher applied potential, low-cost effectiveness and abundance. Accelerate the transition metal based atomic electrocatalyst for advanced catalytic performance toward CO2RR, it is inevitable to explore the reaction mechanism, catalytic active site transformation, and its related fundamental properties are remains of great importance to design unique atomic electrocatalyst. However, there is a huge quest to acquire the distinct atomic catalyst with suitable coordination environment, sufficient metal loading, and validate the electronic effect of catalytic active site is an inevitable for CO2RR.
    Accordingly, we propose transition metals single-atom catalytic active sites hooked with hetero atom coordination environment co-existed on conductive carbon channel, deemed as leading candidate for the CO2 energy conversion. This design will advance the catalyst performance to reach the better efficiency towards CO2 conversion and also bring the clarity in fundamental science for the catalytic activity against CO2 reduction reaction. Eventually, this dissertation aim is to establish the productive electrocatalyst materials and its fundamental investigations of catalytic active site evolution, active site electronic property and product reaction pathway during the electrochemical CO2 reduction using in-situ spectro-electrochemical techniques. Thus, we have presented the consecutive approaches that encounter the challenges and establish the constructive solution for single-atom electrocatalyst against CO2 energy conversion.
    Therefore, approach one addressing the electrocatalytical activity and performance of Fe SAC for CO2 electrolysis. We demonstrate a unique single-atom coordination environment that Fe has been surrounded by three oxygen atoms were exist on HOOC-MWCNTs (Fe-n-f-MWCNTs). Significantly, Fe SAC was achieved by ion exchange process instead of conventional high-temperature treatment, synthesis method was an effortless. The Fe SACs insight coordination structure renders dynamic catalytically active sites to the reaction intermediates during CO2 reduction, which could generate *CO intermediates. Fe atom maintain +3 valance state during CO2 electrolysis. The Fe-(O)3 active site decrease the energy barrier that accelerate the electrons to *COOH and *OCHO intermediates, producing CO. The COOH group on MWCNTs balance the Fe atom by electrostatic force. Eventually, the Fe-n-f-CNTs catalyst shows superior performance towards the CO2 conversion into C2 products record 65% FE at -0.8 VRHE. The presence of oxygen coordination configuration provokes the synergetic effect on Fe SA and enhances the reaction pathway toward multi-electron transfer instead of two-electron transfer. The rate of the product suggest that the Fe SA site deliver an enormous CO to the HOOC-MWCNTs site for C2 product formation.
    Consecutively, second approach is addressing the challenges in the development of CO2 reduction reaction to produce multi-carbon product in which stable dual active sites are inevitable, we introduced Ni and Cu single-atom function together as dual active catalytic sites. Moreover, aim of this approach was discover from the ambiguous mechanism of first approach and its performance outcomes, in which, though we get multi-carbon product as a primary product, second catalytic active site have not been identified. Accordingly, in this approach we proposed Ni/Cu dual catalytic active site, where dual active site catalyst consisting Ni and Cu atomic pair was derived via physical mixing process of Ni-Pc and Cu-Pc commercial single-atom molecules. Significantly, Ni/Cu dual atom site catalysts render proximal two atom pair for the rational nature of synergetic action that trigger the C-C coupling reaction could produce multi-carbon products toward CO2RR. The electrochemical performance of Ni/Cu PASC catalyzed the multi-carbon product of ethanol with FE 0f 55%, whereas Ni-Pc and Cu-Pc has been recorded only single-carbon products. Notably, In-situ spectro-electrochemical studies have revealed that proximal atomic pairs of Ni/Cu dual active sites catalyst render stable active sites along with balanced electronic property under CO2RR.
    Consequently, the consistent production of CO has facilitated by stable Ni active sites, migration of CO underwent C-C coupling with CO2 intermediates formed on the Cu sites. Eventually, the proximal pair of Ni/Cu dual active site catalytic activity concludes that two Ni and Cu single atom active sites harmonious tends sanctioned multi-carbon product toward effective CO2RR. As we explored the Ni/Cu proximal atom catalyst in approach two has limited current density which affects the volume of the multi-carbon production, it inspired us to develop a dual-metal single atom integrated conductive carbon support catalyst. Consequently, third approach aim is to establish the compatible heterogeneous dual-metal single-atom electrocatalyst with high current density. Thus, we synthesis Ni and Fe co-existing as dual-metal single-atom insight catalytic active site associated with 2D carbon channel.

    中文摘要 i Abstract iv Acknowledgment viii Table of contents x List of figures xiii List of units and abbreviations xxv Chapter 1: Introduction 1 1.1 CO2RR is the need of the hour 1 1.1.1 Promising technique of electrochemical CO2 conversion 2 1.1.2 Storage of high density intermittent renewable electricity 3 1.1.3 Rising star of single-atom catalyst 4 1.1.4 Significant of dual-active dual-metal atom catalyst 5 1.1.5 Multi-carbon product formation mechanism 6 1.2 Challenges and barrier in the single & dual-atom catalyst to produce multi-carbon products 7 1.2.1 Synthesis of single and dual-atom catalyst 7 1.2.2 Active sites stability 8 1.2.3 Active site mechanism 9 1.2.4 Mass transfer limitations 10 1.2.5 Flow cell application 12 1.3 Motivation 14 1.4 Objectives 16 Chapter 2: Literature Review: State of the art of atomic electrocatalysts toward CO2 reduction reaction 17 2.1 Synthesis of atomic catalyst 19 2.1.1 Wet chemical process 19 2.1.2 Impregnation method 19 2.1.3 Co-precipitation 21 2.1.4 Galvanic replacement 22 2.1.5 Coordination strategy 23 2.1.6 Atomic layer deposition 24 2.1.7 Pyrolysis 25 2.1.8 Spatial confinement strategy 26 2.1.9 Other synthetic approaches 27 2.2 Significant catalysts performance toward CO2RR 28 2.3 CO2RR active site Mechanism 34 2.4 Investigating CO2 reduction reaction mechanism toward multi-carbon formation 41 2.5 Generating value-added chemicals by CO2RR using MEA flow cell 45 2.6 Crucial approaches to advancing the catalyst performance for multi-carbon products 52 2.6.1 Synthesis single & multi-catalytic active site catalyst material 53 2.6.2 Tuning electronic properties of the metal active site 54 2.6.3 Structural morphology of the catalyst material 56 2.6.4 Tandem effect between metal active sites 58 2.6.5 MEA Flow cells 59 Chapter 3: Experimental section and characterization 61 3.1 Chemicals and reagents 61 3.2 Experimental methods 62 3.2.1 Synthesis of functionalized MWCNTs 62 3.2.2 Preparation of Nafion coated on f-MWCNTs and MWCNTs 62 3.2.3 Synthesis of Fe single-atom on n-F-MWCNTs and n-MWCNTs 63 3.2.4 Preparation of proximal Ni and Cu dual-active sites catalyst (Ni/Cu-PASC) 63 3.2.5 Synthesis of multi-atom on carbon-based catalyst materials 63 3.3 Materials characterization techniques 64 3.3.1 Physical characterization techniques 64 3.3.2 Electrochemical measurements and preparation of working electrode 65 3.3.3 In-situ X-ray characterization techniques 68 3.3.4 In-situ Attenuated total reflectance-Fourier-transform infrared (ATR-FTIR) spectroscopy 70 3.3.4 Density Functional Theory calculation detail 72 Chapter 4: Oxygen coordinated configuration of Fe singe-atom catalyst toward CO2RR into multi-carbon products 77 4.1 Scope of the study 77 4.2 Results and discussion 78 4.2.1 Fe SAC characterization for morphology 78 4.2.2 Fe single-atom performance toward CO2RR 85 4.2.3 In-sight Fe single-atom mechanistic analysis during CO2RR 89 4.2.4 Discussion of reaction mechanism toward CO2RR 99 4.3 Summary 102 Chapter 5: Generating multi-carbon products by electrochemical CO2 reduction via catalytically harmonious Ni/Cu dual active sites 103 5.1 Scope of the study 103 5.2 Results and discussions 104 5.2.1 Material characterizations 104 5.2.2 Ni/Cu-PASC’s electrochemical performance of CO2RR 108 5.2.3 Mechanistic of harmonious Ni/Cu dual-active site under CO2RR 115 5.2.4 CO2 intermediates C-C coupling mechanism 118 5.3 Summary 127 Chapter 6: Generating high-value multi-carbon chemicals from CO2RR by multi-metal single-atom catalyst 129 6.1 Scope of the study 129 6.2 Results and Discussions 130 6.2.1 Material characterizations 130 6.2.2 Electrochemical performance of the SAC 135 6.3 Summary 138 Chapter 7: Conclusions and future perspectives 139 7.1 Conclusions 139 7.2 Future perspective 142 Reference 144 List of publication 164 Conference presentation 165

    (1) Jennings, R.; Henderson, A. D.; Phelps, A.; Janda, K. M.; van den Berg, A. E. Five US Dietary Patterns and Their Relationship to Land Use, Water Use, and Greenhouse Gas Emissions: Implications for Future Food Security. Nutrients 2023, 15 (1), 215.
    (2) Kumar, A.; Mishra, S.; Bakshi, S.; Upadhyay, P.; Thakur, T. K. Response of eutrophication and water quality drivers on greenhouse gas emissions in lakes of China: A critical analysis. Ecohydrology 2023, 16 (1), e2483.
    (3) Noh, J. H.; Park, H. aceGreenhouse gas emissions and stock market volatility: an empirical analysis of OECD countries. International Journal of Climate Change Strategies and Management 2023, (ahead-of-print).
    (4) Beans, E. W. A heat transfer model for global warming. Case Studies in Thermal Engineering 2023, 102677.
    (5) Halkos, G.; Zisiadou, A. Energy Crisis Risk Mitigation through Nuclear Power and RES as Alternative Solutions towards Self-Sufficiency. Journal of Risk and Financial Management 2023, 16 (1), 45.
    (6) Dokas, I.; Oikonomou, G.; Panagiotidis, M.; Spyromitros, E. Macroeconomic and Uncertainty Shocks’ Effects on Energy Prices: A Comprehensive Literature Review. Energies 2023, 16 (3), 1491.
    (7) Alam, M. M.; Aktar, M. A.; Idris, N. D. M.; Al-Amin, A. Q. World Energy Economics and Geopolitics amid COVID-19 and Post-COVID-19 Policy Direction: World Energy Economics and Geopolitics amid COVID-19. World Development Sustainability 2023, 100048.
    (8) Guo, H.; Jiang, J.; Li, Y.; Long, X.; Han, J. An aging giant at the center of global warming: Population dynamics and its effect on CO2 emissions in China. Journal of Environmental Management 2023, 327, 116906.
    (9) Anderson, T. R.; Hawkins, E.; Jones, P. D. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models. Endeavour 2016, 40 (3), 178-187.
    (10) Jiang, K.; Men, Y.; Xing, R.; Fu, B.; Shen, G.; Li, B.; Tao, S. Divergent Energy-Climate Nexus in the Global Fuel Combustion Processes. Environmental Science & Technology 2023.
    (11) Solmaz, H.; Polat, S. Letter from the Special Issue Editors: Special Issue on Fuels and Combustion Control Strategies for Low-Temperature Combustion Engines: Part 2,”. SAE Int. J. Fuels Lubr 2023, 16 (2).
    (12) Pignatelli, F.; Passad, M.; Åkerblom, A.; Nilsson, T.; Nilsson, E.; Fureby, C. Predictions of Spray Combustion using Conventional Category A Fuels and Exploratory Category C Fuels. In AIAA SCITECH 2023 Forum, 2023; p 1486.
    (13) Malla, F. A.; Bandh, S. A.; Wani, S. A.; Hoang, A. T.; Sofi, N. A. Biofuels: Potential Alternatives to Fossil Fuels. In Biofuels in Circular Economy, Springer, 2023; pp 1-15.
    (14) Curley, A. Carbon Sovereignty: Coal, Development, and Energy Transition in the Navajo Nation; University of Arizona Press, 2023.
    (15) Famà, F. R.; Loreti, G.; Calabrò, G.; Ubertini, S.; Volpe, F. A.; Facci, A. L. An optimized power conversion system for a stellarator-based nuclear fusion power plant. Energy Convers. Manage. 2023, 276, 116572.
    (16) Peng, Y.; Gao, J.; Zhang, Y.; Zhang, J.; Sun, Q.; Du, Q.; Tang, Z.; Zhang, T. Experimental study of adsorption CO2 storage device for compressed CO2 energy storage system. Journal of Energy Storage 2023, 58, 106286.
    (17) Xu, C.; Dong, Y.; Shen, Y.; Zhao, H.; Li, L.; Shao, G.; Lei, Y. Fundamental Understanding of Nonaqueous and Hybrid Na–CO2 Batteries: Challenges and Perspectives. Small 2023, 2206445.
    (18) Zulqarnain; Mohd Yusoff, M. H.; Keong, L. K.; Yasin, N. H.; Rafeen, M. S.; Hassan, A.; Srinivasan, G.; Yusup, S.; Shariff, A. M.; Jaafar, A. B. Recent development of integrating CO2 hydrogenation into methanol with ocean thermal energy conversion (OTEC) as potential source of green energy. Green Chemistry Letters and Reviews 2023, 16 (1), 2152740.
    (19) Cui, P.; Zhou, Y.; Song, T.; Xu, Z.; Zhang, J.; Liu, Y.; Wang, Y.; Qi, H.; Han, L.; Yang, S. Thermodynamic and Economic Analysis of an Ammonia Synthesis Process Integrating Liquified Natural Gas Cold Energy with Carbon Capture and Storage. ACS Sustainable Chemistry & Engineering 2023.
    (20) Krevor, S.; de Coninck, H.; Gasda, S. E.; Ghaleigh, N. S.; de Gooyert, V.; Hajibeygi, H.; Juanes, R.; Neufeld, J.; Roberts, J. J.; Swennenhuis, F. Subsurface carbon dioxide and hydrogen storage for a sustainable energy future. Nature Reviews Earth & Environment 2023, 1-17.
    (21) Lombardi, S.; Altunina, L. u. b. K.; Beaubien, S. Advances in the geological storage of carbon dioxide: international approaches to reduce anthropogenic greenhouse gas emissions; Springer Science & Business Media, 2006.
    (22) Lane, J.; Greig, C.; Garnett, A. Uncertain storage prospects create a conundrum for carbon capture and storage ambitions. Nature Climate Change 2021, 11 (11), 925-936.
    (23) Zhang, K.; Xu, J.; Yan, T.; Jia, L.; Zhang, J.; Shao, C.; Zhang, L.; Han, N.; Li, Y. Molecular Modulation of Sequestered Copper Sites for Efficient Electroreduction of Carbon Dioxide to Methane. Adv. Funct. Mater. 2023, 2214062.
    (24) Raganati, F.; Ammendola, P. Review of Carbonate-Based Systems for Thermochemical Energy Storage for Concentrating Solar Power Applications: State-of-the-Art and Outlook. Energy & Fuels 2023.
    (25) Stanley, P. M.; Sixt, F.; Warnan, J. Decoupled Solar Energy Storage and Dark Photocatalysis in a 3D Metal–Organic Framework. Adv. Mater. 2023, 35 (1), 2207280.
    (26) Sun, K.; Qian, Y.; Jiang, H.-L. Metal‐Organic Frameworks for Photocatalytic Water Splitting and CO2 Reduction. Angew. Chem. 2023.
    (27) Jing, S.; Sheng, R.; Liang, X.; Gu, D.; Peng, Y.; Xiao, J.; Shen, Y.; Hu, D.; Xiao, W. Overall Carbon‐neutral Electrochemical Reduction of CO2 in Molten Salts using a Liquid Metal Sn Cathode. Angew. Chem. Int. Ed. 2023, 62 (6), e202216315.
    (28) Samanides, C. G.; Vyrides, I. CO2 conversion to volatile fatty acids by anaerobic granular sludge and Mg0. Biochem. Eng. J. 2023, 191, 108799.
    (29) Lekshmi, G.; Bazaka, K.; Ramakrishna, S.; Kumaravel, V. Microbial electrosynthesis: carbonaceous electrode materials for CO 2 conversion. Materials Horizons 2023.
    (30) Kumar, S.; Priyadarshini, M.; Ahmad, A.; Ghangrekar, M. M. Advanced biological and non-biological technologies for carbon sequestration, wastewater treatment, and concurrent valuable recovery: A review. Journal of CO2 Utilization 2023, 68, 102372.
    (31) Kumar, A.; Bhardwaj, R.; Choudhury, J. Integrated CO2 Capture and Conversion to Methanol Leveraged by the Transfer Hydrogenation Approach. ACS Catalysis 2023, 13, 927-933.
    (32) Zhao, J.; Huang, L.; Xue, L.; Niu, Z.; Zhang, Z.; Ding, Z.; Yuan, R.; Lu, X.; Long, J. Selectively converting CO2 to HCOOH on Cu-alloys integrated in hematite-driven artificial photosynthetic cells. Journal of Energy Chemistry 2023.
    (33) Hu, C.; Chen, X.; Low, J.; Yang, Y.-W.; Li, H.; Wu, D.; Chen, S.; Jin, J.; Li, H.; Ju, H. Near-infrared-featured broadband CO2 reduction with water to hydrocarbons by surface plasmon. Nature Communications 2023, 14 (1), 221.
    (34) Roth, F.; Broman, E.; Sun, X.; Bonaglia, S.; Nascimento, F.; Prytherch, J.; Brüchert, V.; Lundevall Zara, M.; Brunberg, M.; Geibel, M. C. Methane emissions offset atmospheric carbon dioxide uptake in coastal macroalgae, mixed vegetation and sediment ecosystems. Nature Communications 2023, 14 (1), 42.
    (35) Wang, Y.; Huang, Y.; Song, L.; Yuan, J.; Li, W.; Zhu, Y.; Chang, S. X.; Luo, Y.; Ciais, P.; Peñuelas, J. Reduced phosphorus availability in paddy soils under atmospheric CO2 enrichment. Nature Geoscience 2023, 1-7.
    (36) Li, J.; Zeng, H.; Dong, X.; Ding, Y.; Hu, S.; Zhang, R.; Dai, Y.; Cui, P.; Xiao, Z.; Zhao, D. Selective CO2 electrolysis to CO using isolated antimony alloyed copper. Nature Communications 2023, 14 (1), 340.
    (37) Wei, P.; Gao, D.; Liu, T.; Li, H.; Sang, J.; Wang, C.; Cai, R.; Wang, G.; Bao, X. Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis. Nature Nanotechnology 2023, 1-8.
    (38) Ozden, A.; Li, J.; Kandambeth, S.; Li, X.-Y.; Liu, S.; Shekhah, O.; Ou, P.; Zou Finfrock, Y.; Wang, Y.-K.; Alkayyali, T. Energy-and carbon-efficient CO2/CO electrolysis to multicarbon products via asymmetric ion migration–adsorption. Nature Energy 2023, 1-12.
    (39) Seo, H.; Hatton, T. A. Electrochemical direct air capture of CO2 using neutral red as reversible redox-active material. Nature Communications 2023, 14 (1), 313.
    (40) Sikiru, S.; Oladosu, T. L.; Kolawole, S. Y.; Mubarak, L. A.; Soleimani, H.; Afolabi, L. O.; Toyin, A.-O. O. Advance and prospect of carbon quantum dots synthesis for energy conversion and storage application: A comprehensive review. Journal of Energy Storage 2023, 60, 106556.
    (41) Milewski, J.; Zdeb, J.; Szczęśniak, A.; Martsinchyk, A.; Kupecki, J.; Dybiński, O. Concept of a solid oxide electrolysis-molten carbonate fuel cell hybrid system to support a power-to-gas installation. Energy Convers. Manage. 2023, 276, 116582.
    (42) Tan, D.; Wulan, B.; Ma, J.; Cao, X.; Zhang, J. Electrochemical-driven reconstruction for efficient reduction of carbon dioxide into alcohols. Chem Catalysis 2023.
    (43) Biswas, A. N.; Winter, L. R.; Xie, Z.; Chen, J. G. Utilizing CO2 as a Reactant for C3 Oxygenate Production via Tandem Reactions. JACS Au 2023.
    (44) Li, M.; Song, N.; Luo, W.; Chen, J.; Jiang, W.; Yang, J. Engineering Surface Oxophilicity of Copper for Electrochemical CO2 Reduction to Ethanol. Advanced Science 2023, 10 (2), 2204579.
    (45) Zhu, C.; Chen, A.; Mao, J.; Wu, G.; Li, S.; Dong, X.; Li, G.; Jiang, Z.; Song, Y.; Chen, W. Cu–Pd Bimetallic Gas Diffusion Electrodes for Electrochemical Reduction of CO2 to C2+ Products. Small Structures, 2200328.
    (46) Liang, Y.; Zhao, J.; Yang, Y.; Hung, S.-F.; Li, J.; Zhang, S.; Zhao, Y.; Zhang, A.; Wang, C.; Appadoo, D. Stabilizing copper sites in coordination polymers toward efficient electrochemical CC coupling. Nature Communications 2023, 14 (1), 474.
    (47) Li, L.; Su, J.; Lu, J.; Shao, Q. Recent Advances of Core‐Shell Cu‐based Catalysts for the Reduction of CO2 to C2+ Products. Chemistry–An Asian Journal 2023.
    (48) Liu, B.; Ma, L.; Feng, H.; Zhang, Y.; Duan, J.; Wang, Y.; Liu, D.; Li, Q. Photovoltaic-Powered Electrochemical CO2 Reduction: Benchmarking against the Theoretical Limit. ACS Energy Letters 2023, 8, 981-987.
    (49) Guo, S.; Liu, Y.; Huang, Y.; Wang, H.; Murphy, E.; Delafontaine, L.; Chen, J. L.; Zenyuk, I. V.; Atanassov, P. Promoting Electrolysis of Carbon Monoxide toward Acetate and 1-Propanol in Flow Electrolyzer. ACS Energy Letters 2023, 8, 935-942.
    (50) Cai, Z.; Cao, N.; Zhang, F.; Lv, X.; Wang, K.; He, Y.; Shi, Y.; Wu, H. B.; Xie, P. Hierarchical Ag-Cu interfaces promote CC coupling in tandem CO2 electroreduction. Applied Catalysis B: Environmental 2023, 325, 122310.
    (51) Zhang, Z.; Zhu, J.; Chen, S.; Sun, W.; Wang, D. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem. 2023, 135 (3), e202215136.
    (52) Liu, Y.; Mao, R.; Chen, B.; Lu, B.; Piao, Z.; Song, Y.; Zhou, G.; Cheng, H.-M. Atomic design of bidirectional electrocatalysts for reversible Li-CO2 batteries. Mater. Today 2023.
    (53) Li, H.; Huang, H.; Chen, Y.; Lai, F.; Fu, H.; Zhang, L.; Zhang, N.; Bai, S.; Liu, T. High‐Entropy Alloy Aerogels: A New Platform for Carbon Dioxide Reduction. Adv. Mater. 2023, 35 (2), 2209242.
    (54) Yu, P.; Lv, X.; Wang, Q.; Huang, H.; Weng, W.; Peng, C.; Zhang, L.; Zheng, G. Promoting Electrocatalytic CO2 Reduction to CH4 by Copper Porphyrin with Donor–Acceptor Structures. Small 2023, 19 (4), 2205730.
    (55) Liu, H.; Su, Y.; Liu, Z.; Chuai, H.; Zhang, S.; Ma, X. Tailoring microenvironment for enhanced electrochemical CO2 reduction on ultrathin tin oxide derived nanosheets. Nano Energy 2023, 105, 108031.
    (56) Lü, X.; Lu, T.; Karrinne, S.; Mäkiranta, A.; Clements-Croome, D. Renewable Energy Resources and Multi-Energy Hybrid Systems for Urban Buildings in Nordic Climate. Energy and Buildings 2023, 112789.
    (57) De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019, 364 (6438), eaav3506.
    (58) Johnson, D.; Pranada, E.; Yoo, R.; Uwadiunor, E.; Ngozichukwu, B.; Djire, A. Review and Perspective on Transition Metal Electrocatalysts Toward Carbon-Neutral Energy. Energy & Fuels 2023.
    (59) Cheng, Y.; Chen, J.; Yang, C.; Wang, H.; Johannessen, B.; Thomsen, L.; Saunders, M.; Xiao, J.; Yang, S.; Jiang, S. P. Activation of Transition Metal (Fe, Co and Ni)‐Oxide Nanoclusters by Nitrogen Defects in Carbon Nanotube for Selective CO2 Reduction Reaction. Energy & Environmental Materials 2023, 6 (1), e12278.
    (60) Xing, G.; Liu, S.; Liu, J.-y. Computational evaluation of 2D metal-organic frameworks with TMX4-centers (X= O, S and Se) for CO2 electroreduction. Int. J. Hydrogen Energy 2023, 48 (9), 3486-3494.
    (61) Zhang, M.-D.; Huang, J.-R.; Shi, W.; Liao, P.-Q.; Chen, X.-M. Synergistic Effect in a Metal–Organic Framework Boosting the Electrochemical CO2 Overall Splitting. JACS 2023.
    (62) Lee, J.; Choi, H.; Mun, J.; Jin, E.; Lee, S.; Nam, J.; Umer, M.; Cho, J.; Lee, G.; Kwon, Y. Nanozyme Based on Porphyrinic Metal–Organic Framework for Electrocatalytic CO2 Reduction. Small Structures 2023, 4 (1), 2200087.
    (63) Qu, G.; Wei, K.; Pan, K.; Qin, J.; Lv, J.; Li, J.; Ning, P. Emerging Materials for Electrochemical CO2 Reduction: Progress and Optimization Strategies of Carbon-based Single-atom Catalysts. Nanoscale 2023.
    (64) Wang, Y.; Zhang, Y.; Yu, W.; Chen, F.; Ma, T.; Huang, H. Single-atom catalysts for energy conversion. Journal of Materials Chemistry A 2023.
    (65) Yuan, L. J.; Sui, X. L.; Liu, C.; Zhuo, Y. L.; Li, Q.; Pan, H.; Wang, Z. B. Electrocatalysis Mechanism and Structure–Activity Relationship of Atomically Dispersed Metal‐Nitrogen‐Carbon Catalysts for Electrocatalytic Reactions. Small Methods 2023, 2201524.
    (66) Wang, M.; Kong, L.; Lu, X.; Wu, C.-M. L. First-row transition metal embedded pyrazine-based graphynes as high-performance single atom catalysts for the CO 2 reduction reaction. Journal of Materials Chemistry A 2022, 10 (16), 9048-9058.
    (67) Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D. Isolated Ni single atoms in graphene nanosheets for high-performance CO 2 reduction. Energy & Environmental Science 2018, 11 (4), 893-903.
    (68) Mohanty, B.; Basu, S.; Jena, B. K. Transition metal-based single-atom catalysts (TM-SACs); rising materials for electrochemical CO2 reduction. Journal of Energy Chemistry 2022.
    (69) Wang, X.; Zhu, Y.; Li, H.; Lee, J. M.; Tang, Y.; Fu, G. Rare‐Earth Single‐Atom Catalysts: A New Frontier in Photo/Electrocatalysis. Small Methods 2022, 6 (8), 2200413.
    (70) Zhang, X.; Zhu, X.; Bo, S.; Chen, C.; Qiu, M.; Wei, X.; He, N.; Xie, C.; Chen, W.; Zheng, J. Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst. Nature Communications 2022, 13 (1), 5337.
    (71) Koolen, C. D.; Luo, W.; Züttel, A. From Single Crystal to Single Atom Catalysts: Structural Factors Influencing the Performance of Metal Catalysts for CO2 Electroreduction. ACS Catalysis 2022, 13, 948-973.
    (72) Dong, W.; Zhang, N.; Li, S.; Min, S.; Peng, J.; Liu, W.; Zhan, D.; Bai, H. A Mn single atom catalyst with Mn–N 2 O 2 sites integrated into carbon nanosheets for efficient electrocatalytic CO 2 reduction. Journal of Materials Chemistry A 2022, 10 (20), 10892-10901.
    (73) Zhao, C.; Su, X.; Wang, S.; Tian, Y.; Yan, L.; Su, Z. Single-atom catalysts on supported silicomolybdic acid for CO 2 electroreduction: a DFT prediction. Journal of Materials Chemistry A 2022, 10 (11), 6178-6186.
    (74) Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118 (10), 4981-5079.
    (75) Xue, K.; Mo, Y.; Long, B.; Wei, W.; Shan, C.; Guo, S.; Niu, L. Single‐atom catalysts supported on ordered porous materials: Synthetic strategies and applications. InfoMat 2022, 4 (6), e12296.
    (76) Xia, J.; Wang, B.; Di, J.; Li, Y.; Yang, S.-Z.; Li, H.; Guo, S. Construction of single-atom catalysts for electro-, photo-and photoelectro-catalytic applications: State-of-the-art, opportunities, and challenges. Mater. Today 2022.
    (77) Hu, H.; Wang, J.; Tao, P.; Song, C.; Shang, W.; Deng, T.; Wu, J. Stability of single-atom catalysts for electrocatalysis. Journal of Materials Chemistry A 2022, 10 (11), 5835-5849.
    (78) Zhang, Y.; Yang, J.; Ge, R.; Zhang, J.; Cairney, J. M.; Li, Y.; Zhu, M.; Li, S.; Li, W. The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coord. Chem. Rev. 2022, 461, 214493.
    (79) Tomboc, G. M.; Kim, T.; Jung, S.; Yoon, H. J.; Lee, K. Modulating the local coordination environment of single‐atom catalysts for enhanced catalytic performance in hydrogen/oxygen evolution reaction. Small 2022, 18 (17), 2105680.
    (80) Xie, Y.; Ou, P.; Wang, X.; Xu, Z.; Li, Y. C.; Wang, Z.; Huang, J. E.; Wicks, J.; McCallum, C.; Wang, N. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nature Catalysis 2022, 5 (6), 564-570.
    (81) Zhen, S.; Zhang, G.; Cheng, D.; Gao, H.; Li, L.; Lin, X.; Ding, Z.; Zhao, Z. J.; Gong, J. Nature of the active sites of copper zinc catalysts for carbon dioxide electroreduction. Angew. Chem. Int. Ed. 2022, 61 (22), e202201913.
    (82) Zhu, Q.; Hu, Y.; Chen, H.; Meng, C.; Shang, Y.; Hao, C.; Wei, S.; Wang, Z.; Lu, X.; Liu, S. Graphdiyne supported Ag-Cu tandem catalytic scheme for electrocatalytic reduction of CO2 to C2+ products. Nanoscale 2023.
    (83) Zhang, T.; Li, Z.; Ummireddi, A. K.; Wu, J. Navigating CO utilization in tandem electrocatalysis of CO2. Trends in Chemistry 2023.
    (84) Zhang, Y.; Liu, T.; Wang, X.; Dang, Q.; Zhang, M.; Zhang, S.; Li, X.; Tang, S.; Jiang, J. Dual-Atom Metal and Nonmetal Site Catalyst on a Single Nickel Atom Supported on a Hybridized BCN Nanosheet for Electrochemical CO2 Reduction to Methane: Combining High Activity and Selectivity. ACS Applied Materials & Interfaces 2022, 14 (7), 9073-9083.
    (85) Zhang, W.; Jia, B.; Liu, X.; Ma, T. Surface and interface chemistry in metal‐free electrocatalysts for electrochemical CO2 reduction. SmartMat 2022, 3 (1), 5-34.
    (86) Chen, C.; Yu, S.; Yang, Y.; Louisia, S.; Roh, I.; Jin, J.; Chen, S.; Chen, P.-C.; Shan, Y.; Yang, P. Exploration of the bio-analogous asymmetric C–C coupling mechanism in tandem CO2 electroreduction. Nature Catalysis 2022, 5 (10), 878-887.
    (87) Zhang, H.; Xu, C.; Zhan, X.; Yu, Y.; Zhang, K.; Luo, Q.; Gao, S.; Yang, J.; Xie, Y. Mechanistic insights into CO2 conversion chemistry of copper bis-(terpyridine) molecular electrocatalyst using accessible operando spectrochemistry. Nature Communications 2022, 13 (1), 6029.
    (88) Cao, S.; Zhou, S.; Chen, H.; Wei, S.; Liu, S.; Lin, X.; Chen, X.; Wang, Z.; Guo, W.; Lu, X. How can the Dual‐atom Catalyst FeCo–NC Surpass Single‐atom Catalysts Fe–NC/Co–NC in CO2RR?–CO Intermediate Assisted Promotion via a Synergistic Effect. Energy & Environmental Materials 2022.
    (89) Wang, Y.; Park, B. J.; Paidi, V. K.; Huang, R.; Lee, Y.; Noh, K.-J.; Lee, K.-S.; Han, J. W. Precisely constructing orbital coupling-modulated dual-atom fe pair sites for synergistic CO2 electroreduction. ACS Energy Letters 2022, 7 (2), 640-649.
    (90) Liang, X.-M.; Wang, H.-J.; Zhang, C.; Zhong, D.-C.; Lu, T.-B. Controlled synthesis of a Ni2 dual-atom catalyst for synergistic CO2 electroreduction. Applied Catalysis B: Environmental 2023, 322, 122073.
    (91) Li, R.; Wang, D. Superiority of dual‐atom catalysts in electrocatalysis: one step further than single‐atom catalysts. Advanced Energy Materials 2022, 12 (9), 2103564.
    (92) Zhu, J.; Xiao, M.; Ren, D.; Gao, R.; Liu, X.; Zhang, Z.; Luo, D.; Xing, W.; Su, D.; Yu, A. Quasi-Covalently Coupled Ni–Cu Atomic Pair for Synergistic Electroreduction of CO2. JACS 2022, 144 (22), 9661-9671.
    (93) Zhao, W.; Luo, C.; Lin, Y.; Wang, G.-B.; Chen, H. M.; Kuang, P.; Yu, J. Pt–Ru dimer electrocatalyst with electron redistribution for hydrogen evolution reaction. ACS Catalysis 2022, 12 (9), 5540-5548.
    (94) Zhang, J.; Zeng, G.; Chen, L.; Lai, W.; Yuan, Y.; Lu, Y.; Ma, C.; Zhang, W.; Huang, H. Tuning the reaction path of CO2 electroreduction reaction on indium single-atom catalyst: Insights into the active sites. Nano Research 2022, 15 (5), 4014-4022.
    (95) Huo, S.; Lu, J.; Wang, X. Recent progress in electrochemical reduction of carbon dioxide on metal single‐atom catalysts. Energy Science & Engineering 2022, 10 (5), 1584-1600.
    (96) Cheng, M.-J.; Clark, E. L.; Pham, H. H.; Bell, A. T.; Head-Gordon, M. Quantum mechanical screening of single-atom bimetallic alloys for the selective reduction of CO2 to C1 hydrocarbons. Acs Catalysis 2016, 6 (11), 7769-7777.
    (97) Sun, L.; Reddu, V.; Wang, X. Multi-atom cluster catalysts for efficient electrocatalysis. Chem. Soc. Rev. 2022, 51 (21), 8923-8956.
    (98) Mensah-Darkwa, K.; Ampong, D. N.; Dzikunu, P.; de Souza, F. M.; Kumar, A.; Gupta, R. K. Multi-metallic organic framework-derived materials for electrocatalytic CO2 reduction reaction. Fuel 2023, 335, 127056.
    (99) Sheng, W.; Kattel, S.; Yao, S.; Yan, B.; Liang, Z.; Hawxhurst, C.; Wu, Q.; Chen, J. 283 Electrochemical Reduction of CO2 to Synthesis Gas with Controlled CO/H2 Ratios. Energy 284. Environ. Sci 2017, 10 (5), 1180-1185.
    (100) Yuan, W.; Ma, Y.; Wu, H.; Cheng, L. Single-atom catalysts for CO oxidation, CO2 reduction, and O2 electrochemistry. Journal of Energy Chemistry 2022, 65, 254-279.
    (101) He, M.; Chang, X.; Chao, T.-H.; Li, C.; Goddard III, W. A.; Cheng, M.-J.; Xu, B.; Lu, Q. Selective Enhancement of Methane Formation in Electrochemical CO2 Reduction Enabled by a Raman-Inactive Oxygen-Containing Species on Cu. ACS Catalysis 2022, 12 (10), 6036-6046.
    (102) Deng, B.; Huang, M.; Li, K.; Zhao, X.; Geng, Q.; Chen, S.; Xie, H.; Dong, X. a.; Wang, H.; Dong, F. The Crystal Plane is not the Key Factor for CO2‐to‐Methane Electrosynthesis on Reconstructed Cu2O Microparticles. Angew. Chem. Int. Ed. 2022, 61 (7), e202114080.
    (103) Nam, D. H.; Shekhah, O.; Ozden, A.; McCallum, C.; Li, F.; Wang, X.; Lum, Y.; Lee, T.; Li, J.; Wicks, J. High‐Rate and Selective CO2 Electrolysis to Ethylene via Metal–Organic‐Framework‐Augmented CO2 Availability. Adv. Mater. 2022, 2207088.
    (104) Zhang, Z.; Bian, L.; Tian, H.; Liu, Y.; Bando, Y.; Yamauchi, Y.; Wang, Z. L. Tailoring the Surface and Interface Structures of Copper‐Based Catalysts for Electrochemical Reduction of CO2 to Ethylene and Ethanol. Small 2022, 18 (18), 2107450.
    (105) Wang, P.; Yang, H.; Tang, C.; Wu, Y.; Zheng, Y.; Cheng, T.; Davey, K.; Huang, X.; Qiao, S.-Z. Boosting electrocatalytic CO2–to–ethanol production via asymmetric C–C coupling. Nature Communications 2022, 13 (1), 3754.
    (106) He, T.; Santiago, A. R. P.; Kong, Y.; Ahsan, M. A.; Luque, R.; Du, A.; Pan, H. Atomically Dispersed Heteronuclear Dual‐Atom Catalysts: A New Rising Star in Atomic Catalysis. Small 2022, 18 (12), 2106091.
    (107) Abdelghafar, F.; Xu, X.; Shao, Z. Designing single-atom catalysts toward improved alkaline hydrogen evolution reaction. Materials Reports: Energy 2022, 100144.
    (108) Liao, G.; Zhang, L.; Li, C.; Liu, S.-Y.; Fang, B.; Yang, H. Emerging carbon-supported single-atom catalysts for biomedical applications. Matter 2022, 5 (10), 3341-3374.
    (109) Shan, J.; Ye, C.; Jiang, Y.; Jaroniec, M.; Zheng, Y.; Qiao, S.-Z. Metal-metal interactions in correlated single-atom catalysts. Science Advances 2022, 8 (17), eabo0762.
    (110) Che, W.; Tao, T.; Baek, J.-B. Strategies for boosting the activity of single-atom catalysts for future energy applications. Journal of Materials Chemistry A 2022, 10 (19), 10297-10325.
    (111) Zhang, X.; Li, G.; Chen, G.; Wu, D.; Zhou, X.; Wu, Y. Single-atom nanozymes: A rising star for biosensing and biomedicine. Coord. Chem. Rev. 2020, 418, 213376.
    (112) He, T.; Puente‐Santiago, A. R.; Xia, S.; Ahsan, M. A.; Xu, G.; Luque, R. Experimental and Theoretical Advances on Single Atom and Atomic Cluster‐Decorated Low‐Dimensional Platforms towards Superior Electrocatalysts. Advanced Energy Materials 2022, 12 (22), 2200493.
    (113) Ding, S.; Barr, J. A.; Lyu, Z.; Zhang, F.; Wang, M.; Tieu, P.; Li, X.; Engelhard, M. H.; Feng, Z.; Beckman, S. P. Effect of Phosphorus Modulation in Iron Single-Atom Catalysts for Peroxidase Mimicking. Advanced Materials (Deerfield Beach, Fla.) 2023, e2209633-e2209633.
    (114) Li, S.; Lin, J.; Chang, B.; Yang, D.; Wu, D.-Y.; Wang, J.; Zhou, W.; Liu, H.; Sun, S.; Zhang, L. Implanting single-atom N2-Fe-B2 catalytic sites in carbon hosts to stabilize high-loading and lean-electrolyte lithium-sulfur batteries. Energy Storage Materials 2023, 55, 94-104.
    (115) Xie, F.; Cui, X.; Zhi, X.; Yao, D.; Johannessen, B.; Lin, T.; Tang, J.; Woodfield, T. B.; Gu, L.; Qiao, S.-Z. A general approach to 3D-printed single-atom catalysts. Nature Synthesis 2023, 1-11.
    (116) Li, T.; Ren, S.; Zhang, C.; Qiao, L.; Wu, J.; He, P.; Lin, J.; Liu, Y.; Fu, Z.; Zhu, Q. Cobalt single atom anchored on N-doped carbon nanoboxes as typical single-atom catalysts (SACs) for boosting the overall water splitting. Chem. Eng. J. 2023, 141435.
    (117) Ren, T.; Miao, Z.; Ren, L.; Xie, H.; Li, Q.; Xia, C. Nanostructure Engineering of Sn‐Based Catalysts for Efficient Electrochemical CO2 Reduction. Small 2023, 19 (2), 2205168.
    (118) Chen, J.; Lin, Y.; Wang, H.; Li, J.; Liu, S.; Lee, J. M.; Zhao, Q. 2D Molybdenum Compounds for Electrocatalytic Energy Conversion. Adv. Funct. Mater. 2023, 33 (4), 2210236.
    (119) Jung, J. Y.; Jin, H.; Kim, M. W.; Kim, S.; Kim, J.-G.; Kim, P.; Sung, Y.-E.; Yoo, S. J.; Kim, N. D. Atomization driven crystalline nanocarbon based single-atom catalysts for superior oxygen electroreduction. Applied Catalysis B: Environmental 2023, 323, 122172.
    (120) García‐Vargas, C. E.; Pereira‐Hernández, X. I.; Jiang, D.; Alcala, R.; DeLaRiva, A. T.; Datye, A.; Wang, Y. Highly Active and Stable Single Atom Rh1/CeO2 Catalyst for CO Oxidation during Redox Cycling. ChemCatChem 2023, e202201210.
    (121) Chen, S.; Li, X.; Kao, C. W.; Luo, T.; Chen, K.; Fu, J.; Ma, C.; Li, H.; Li, M.; Chan, T. S. Unveiling the Proton‐Feeding Effect in Sulfur‐Doped Fe− N− C Single‐Atom Catalyst for Enhanced CO2 Electroreduction. Angew. Chem. Int. Ed. 2022, 61 (32), e202206233.
    (122) Hung, S.-F.; Xu, A.; Wang, X.; Li, F.; Hsu, S.-H.; Li, Y.; Wicks, J.; Cervantes, E. G.; Rasouli, A. S.; Li, Y. C. A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation. Nature communications 2022, 13 (1), 819.
    (123) Lee, S. M.; Cheon, W. S.; Lee, M. G.; Jang, H. W. Coordination Environment in Single‐Atom Catalysts for High‐Performance Electrocatalytic CO2 Reduction. Small Structures 2022, 2200236.
    (124) Lin, J.; Ding, J.; Wang, H.; Yang, X.; Zheng, X.; Huang, Z.; Song, W.; Ding, J.; Han, X.; Hu, W. Boosting Energy Efficiency and Stability of Li–CO2 Batteries via Synergy between Ru Atom Clusters and Single‐Atom Ru–N4 sites in the Electrocatalyst Cathode. Adv. Mater. 2022, 34 (17), 2200559.
    (125) Ren, M.; Guo, X.; Huang, S. Coordination-tuned Fe single-atom catalyst for efficient CO2 electroreduction: The power of B atom. Chem. Eng. J. 2022, 433, 134270.
    (126) An, B.; Zhou, J.; Zhu, Z.; Li, Y.; Wang, L.; Zhang, J. Uncovering the coordination effect on the Ni single-atom catalysts for CO2 reduction including vacancy defect and non-vacancy defect structures. Fuel 2022, 310, 122472.
    (127) Zou, H.; Zhao, G.; Dai, H.; Dong, H.; Luo, W.; Wang, L.; Lu, Z.; Luo, Y.; Zhang, G.; Duan, L. Electronic Perturbation of Copper Single‐Atom CO2 Reduction Catalysts in a Molecular Way. Angew. Chem. Int. Ed. 2023, 62 (6), e202217220.
    (128) Xu, W.; Tang, H.; Gu, H.; Xi, H.; Wu, P. F.; Liang, B.; Liu, Q.; Chen, W. Research progress of asymmetrically coordinated single-atom catalysts for electrocatalytic reactions. Journal of Materials Chemistry A 2022.
    (129) Wang, L.; Chen, H.; Wang, Y.; Liu, X.; Li, C.; He, J.; Yao, T. Recent advances in regulating the local environment of MN 4 structure for tailored chemical reactions. Nano Research 2023.
    (130) He, P.; Feng, H.; Wang, S.; Ding, H.; Liang, Y.; Ling, M.; Zhang, X. Electrocatalytic CO 2 reduction reaction on dual-metal-and nitrogen-doped graphene: coordination environment effect of active sites. Materials Advances 2022, 3 (11), 4566-4577.
    (131) Zhao, X.; Wang, F.; Kong, X.-P.; Fang, R.; Li, Y. Dual-metal hetero-single-atoms with different coordination for efficient synergistic catalysis. JACS 2021, 143 (39), 16068-16077.
    (132) Gong, Y. N.; Cao, C. Y.; Shi, W. J.; Zhang, J. H.; Deng, J. H.; Lu, T. B.; Zhong, D. C. Modulating the Electronic Structures of Dual‐Atom Catalysts via Coordination Environment Engineering for Boosting CO2 Electroreduction. Angew. Chem. Int. Ed. 2022, 61 (51), e202215187.
    (133) Yao, D.; Tang, C.; Zhi, X.; Johannessen, B.; Slattery, A.; Chern, S.; Qiao, S. Z. Inter‐Metal Interaction with a Threshold Effect in NiCu Dual‐Atom Catalysts for CO2 Electroreduction. Adv. Mater. 2023, 35 (11), 2209386.
    (134) Wang, J.; Zheng, M.; Zhao, X.; Fan, W. Structure-Performance Descriptors and the Role of the Axial Oxygen Atom on M–N4–C Single-Atom Catalysts for Electrochemical CO2 Reduction. ACS Catalysis 2022, 12 (9), 5441-5454.
    (135) Huang, M.; Deng, B.; Zhao, X.; Zhang, Z.; Li, F.; Li, K.; Cui, Z.; Kong, L.; Lu, J.; Dong, F. Template-sacrificing synthesis of well-defined asymmetrically coordinated single-atom catalysts for highly efficient CO2 electrocatalytic reduction. ACS nano 2022, 16 (2), 2110-2119.
    (136) Pieta, I. S.; Kadam, R. G.; Pieta, P.; Mrdenovic, D.; Nowakowski, R.; Bakandritsos, A.; Tomanec, O.; Petr, M.; Otyepka, M.; Kostecki, R. The hallmarks of copper single atom catalysts in direct alcohol fuel cells and electrochemical CO2 fixation. Advanced Materials Interfaces 2021, 8 (8), 2001822.
    (137) Cao, S.; Wei, S.; Wei, X.; Zhou, S.; Chen, H.; Hu, Y.; Wang, Z.; Liu, S.; Guo, W.; Lu, X. Can N, S Cocoordination Promote Single Atom Catalyst Performance in CO2RR? Fe‐N2S2 Porphyrin versus Fe‐N4 Porphyrin. Small 2021, 17 (29), 2100949.
    (138) Lin, L.; Li, H.; Wang, Y.; Li, H.; Wei, P.; Nan, B.; Si, R.; Wang, G.; Bao, X. Temperature‐dependent CO2 electroreduction over Fe‐N‐C and Ni‐N‐C single‐atom catalysts. Angew. Chem. 2021, 133 (51), 26786-26790.
    (139) Zhang, N.; Zhang, X.; Tao, L.; Jiang, P.; Ye, C.; Lin, R.; Huang, Z.; Li, A.; Pang, D.; Yan, H. Silver single‐atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem. Int. Ed. 2021, 60 (11), 6170-6176.
    (140) Tamtaji, M.; Gao, H.; Hossain, M. D.; Galligan, P. R.; Wong, H.; Liu, Z.; Liu, H.; Cai, Y.; Goddard, W. A.; Luo, Z. Machine learning for design principles for single atom catalysts towards electrochemical reactions. Journal of Materials Chemistry A 2022, 10 (29), 15309-15331.
    (141) Fan, K.; Sun, Y.; Xu, P.; Guo, J.; Li, Z.; Shao, M. Single-atom Catalysts Based on Layered Double Hydroxides. Chemical Research in Chinese Universities 2022, 38 (5), 1185-1196.
    (142) Li, Z.; Li, B.; Hu, Y.; Liao, X.; Yu, H.; Yu, C. Emerging Ultrahigh‐Density Single‐Atom Catalysts for Versatile Heterogeneous Catalysis Applications: Redefinition, Recent Progress, and Challenges. Small Structures 2022, 3 (6), 2200041.
    (143) Huang, Y.; Rehman, F.; Tamtaji, M.; Li, X.; Huang, Y.; Zhang, T.; Luo, Z. Mechanistic understanding and design of non-noble metal-based single-atom catalysts supported on two-dimensional materials for CO 2 electroreduction. Journal of Materials Chemistry A 2022, 10 (11), 5813-5834.
    (144) Huang, H.; Shi, R.; Li, Z.; Zhao, J.; Su, C.; Zhang, T. Triphase Photocatalytic CO2 Reduction over Silver‐Decorated Titanium Oxide at a Gas–Water Boundary. Angew. Chem. 2022, 134 (17), e202200802.
    (145) Lu, Q.; Chen, C.; Di, Q.; Liu, W.; Sun, X.; Tuo, Y.; Zhou, Y.; Pan, Y.; Feng, X.; Li, L. Dual role of pyridinic-N doping in carbon-coated Ni nanoparticles for highly efficient electrochemical CO2 reduction to CO over a wide potential range. ACS Catalysis 2022, 12 (2), 1364-1374.
    (146) Yang, H.; Huang, J.; Yang, H.; Guo, Q.; Jiang, B.; Chen, J.; Yuan, X. Design and Synthesis of Ag‐based Catalysts for Electrochemical CO2 Reduction: Advances and Perspectives. Chemistry–An Asian Journal 2022, 17 (18), e202200637.
    (147) He, Y. C.; Ma, D. D.; Zhou, S. H.; Zhang, M.; Tian, J. J.; Zhu, Q. L. Integrated 3D Open Network of Interconnected Bismuthene Arrays for Energy‐Efficient and Electrosynthesis‐Assisted Electrocatalytic CO2 Reduction. Small 2022, 18 (1), 2105246.
    (148) Lai, W.; Qiao, Y.; Zhang, J.; Lin, Z.; Huang, H. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO 2 reduction reaction. Energy & Environmental Science 2022, 15 (9), 3603-3629.
    (149) Lu, S.; Wang, Y.; Xiang, H.; Lei, H.; Xu, B. B.; Xing, L.; Yu, E. H.; Liu, T. X. Mass transfer effect to electrochemical reduction of CO2: Electrode, electrocatalyst and electrolyte. Journal of Energy Storage 2022, 52, 104764.
    (150) King, A. J.; Bui, J. C.; Bell, A. T.; Weber, A. Z. Establishing the Role of Operating Potential and Mass Transfer in Multicarbon Product Generation for Photoelectrochemical CO2 Reduction Cells Using a Cu Catalyst. ACS Energy Letters 2022, 7 (8), 2694-2700.
    (151) Kim, J.; Guo, W.; Kim, H.; Choe, S.; Kim, S. Y.; Ahn, S. H. Gaseous CO2 Electrolysis: Progress, Challenges, and Prospects. ACS Sustainable Chemistry & Engineering 2022, 10 (43), 14092-14111.
    (152) Yang, K.; Kas, R.; Smith, W. A.; Burdyny, T. Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction. ACS Energy Letters 2020, 6 (1), 33-40.
    (153) Wang, J.; Yu, J.; Sun, M.; Liao, L.; Zhang, Q.; Zhai, L.; Zhou, X.; Li, L.; Wang, G.; Meng, F. Surface Molecular Functionalization of Unusual Phase Metal Nanomaterials for Highly Efficient Electrochemical Carbon Dioxide Reduction under Industry‐Relevant Current Density. Small 2022, 18 (11), 2106766.
    (154) Fang, M.; Xu, L.; Zhang, H.; Zhu, Y.; Wong, W.-Y. Metalloporphyrin-Linked Mercurated Graphynes for Ultrastable CO2 Electroreduction to CO with Nearly 100% Selectivity at a Current Density of 1.2 A cm–2. JACS 2022, 144 (33), 15143-15154.
    (155) Kim, Y. E.; Lee, W.; Ko, Y. N.; Park, J. E.; Tan, D.; Hong, J.; Jeon, Y. E.; Oh, J.; Park, K. T. Role of Binder in Cu2O Gas Diffusion Electrodes for CO2 Reduction to C2+ Products. ACS Sustainable Chemistry & Engineering 2022, 10 (36), 11710-11718.
    (156) Lees, E. W.; Mowbray, B. A.; Parlane, F. G.; Berlinguette, C. P. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nature Reviews Materials 2022, 7 (1), 55-64.
    (157) Choi, W.; Park, S.; Jung, W.; Won, D. H.; Na, J.; Hwang, Y. J. Origin of hydrogen incorporated into ethylene during electrochemical CO2 reduction in membrane electrode assembly. ACS Energy Letters 2022, 7 (3), 939-945.
    (158) Choi, W.; Choi, Y.; Choi, E.; Yun, H.; Jung, W.; Lee, W. H.; Oh, H.-S.; Na, J.; Hwang, Y. J. Microenvironments of Cu catalysts in zero-gap membrane electrode assembly for efficient CO 2 electrolysis to C 2+ products. Journal of Materials Chemistry A 2022, 10 (19), 10363-10372.
    (159) Wang, Z.; Zhou, Y.; Liu, D.; Qi, R.; Xia, C.; Li, M.; You, B.; Xia, B. Y. Carbon‐Confined Indium Oxides for Efficient Carbon Dioxide Reduction in a Solid‐State Electrolyte Flow Cell. Angew. Chem. Int. Ed. 2022, 61 (21), e202200552.
    (160) Wu, X.; Sun, J. W.; Liu, P. F.; Zhao, J. Y.; Liu, Y.; Guo, L.; Dai, S.; Yang, H. G.; Zhao, H. Molecularly dispersed cobalt phthalocyanine mediates selective and durable CO2 reduction in a membrane flow cell. Adv. Funct. Mater. 2022, 32 (11), 2107301.
    (161) Wen, G.; Ren, B.; Wang, X.; Luo, D.; Dou, H.; Zheng, Y.; Gao, R.; Gostick, J.; Yu, A.; Chen, Z. Continuous CO2 electrolysis using a CO2 exsolution-induced flow cell. Nature Energy 2022, 7 (10), 978-988.
    (162) Liu, B.; Wang, T.; Wang, S.; Zhang, G.; Zhong, D.; Yuan, T.; Dong, H.; Wu, B.; Gong, J. Back-illuminated photoelectrochemical flow cell for efficient CO2 reduction. Nature Communications 2022, 13 (1), 7111.
    (163) Sassenburg, M.; Kelly, M.; Subramanian, S.; Smith, W. A.; Burdyny, T. Zero-Gap Electrochemical CO2 Reduction Cells: Challenges and Operational Strategies for Prevention of Salt Precipitation. ACS Energy Letters 2022, 8 (1), 321-331.
    (164) Wang, S.; Qian, Z.; Huang, Q.; Tan, Y.; Lv, F.; Zeng, L.; Shang, C.; Wang, K.; Wang, G.; Mao, Y. Industrial‐Level CO2 Electroreduction Using Solid‐Electrolyte Devices Enabled by High‐Loading Nickel Atomic Site Catalysts. Advanced Energy Materials 2022, 12 (31), 2201278.
    (165) Yuan, L.; Zeng, S.; Zhang, X.; Ji, X.; Zhang, S. Advances and challenges of electrolyzers for large-scale CO2 electroreduction. Materials Reports: Energy 2023, 100177.
    (166) Li, M.; Idros, M. N.; Wu, Y.; Burdyny, T.; Garg, S.; Zhao, X. S.; Wang, G.; Rufford, T. E. The role of electrode wettability in electrochemical reduction of carbon dioxide. Journal of Materials Chemistry A 2021, 9 (35), 19369-19409.
    (167) Shi, R.; Guo, J.; Zhang, X.; Waterhouse, G. I.; Han, Z.; Zhao, Y.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nature communications 2020, 11 (1), 3028.
    (168) Salvatore, D.; Berlinguette, C. P. Voltage matters when reducing CO2 in an electrochemical flow cell. ACS Energy Letters 2019, 5 (1), 215-220.
    (169) Sedighian Rasouli, A.; Wang, X.; Wicks, J.; Lee, G.; Peng, T.; Li, F.; McCallum, C.; Dinh, C.-T.; Ip, A. H.; Sinton, D. CO2 electroreduction to methane at production rates exceeding 100 mA/cm2. ACS Sustainable Chemistry & Engineering 2020, 8 (39), 14668-14673.
    (170) Lees, E. W.; Mowbray, B. A.; Salvatore, D. A.; Simpson, G. L.; Dvorak, D. J.; Ren, S.; Chau, J.; Milton, K. L.; Berlinguette, C. P. Linking gas diffusion electrode composition to CO 2 reduction in a flow cell. Journal of Materials Chemistry A 2020, 8 (37), 19493-19501.
    (171) Zhu, P.; Wang, H. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nature Catalysis 2021, 4 (11), 943-951.
    (172) Ju, W.; Bagger, A.; Hao, G.-P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nature communications 2017, 8 (1), 944.
    (173) Phillips, K. R.; Katayama, Y.; Hwang, J.; Shao-Horn, Y. Sulfide-derived copper for electrochemical conversion of CO2 to formic acid. The journal of physical chemistry letters 2018, 9 (15), 4407-4412.
    (174) Gao, D.; Zhou, H.; Cai, F.; Wang, J.; Wang, G.; Bao, X. Pd-containing nanostructures for electrochemical CO2 reduction reaction. Acs Catalysis 2018, 8 (2), 1510-1519.
    (175) Yang, H.; Wu, Y.; Li, G.; Lin, Q.; Hu, Q.; Zhang, Q.; Liu, J.; He, C. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. JACS 2019, 141 (32), 12717-12723.
    (176) Guan, A.; Chen, Z.; Quan, Y.; Peng, C.; Wang, Z.; Sham, T.-K.; Yang, C.; Ji, Y.; Qian, L.; Xu, X. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS energy letters 2020, 5 (4), 1044-1053.
    (177) Lin, S.-C.; Chang, C.-C.; Chiu, S.-Y.; Pai, H.-T.; Liao, T.-Y.; Hsu, C.-S.; Chiang, W.-H.; Tsai, M.-K.; Chen, H. M. Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction. Nature Communications 2020, 11 (1), 3525.
    (178) Lakshmanan, K.; Huang, W. H.; Chala, S. A.; Taklu, B. W.; Moges, E. A.; Lee, J. F.; Huang, P. Y.; Lee, Y. C.; Tsai, M. C.; Su, W. N. Highly Active Oxygen Coordinated Configuration of Fe Single‐Atom Catalyst toward Electrochemical Reduction of CO2 into Multi‐Carbon Products. Adv. Funct. Mater. 2022, 32 (24), 2109310.
    (179) Liu, W.; Zhang, H.; Li, C.; Wang, X.; Liu, J.; Zhang, X. Non-noble metal single-atom catalysts prepared by wet chemical method and their applications in electrochemical water splitting. Journal of Energy Chemistry 2020, 47, 333-345.
    (180) Cheng, N.; Zhang, L.; Doyle-Davis, K.; Sun, X. Single-atom catalysts: from design to application. Electrochemical Energy Reviews 2019, 2, 539-573.
    (181) Lang, R.; Du, X.; Huang, Y.; Jiang, X.; Zhang, Q.; Guo, Y.; Liu, K.; Qiao, B.; Wang, A.; Zhang, T. Single-atom catalysts based on the metal–oxide interaction. Chem. Rev. 2020, 120 (21), 11986-12043.
    (182) Li, N.; Wang, X.; Derrouiche, S.; Haller, G. L.; Pfefferle, L. D. Role of surface cobalt silicate in single-walled carbon nanotube synthesis from silica-supported cobalt catalysts. ACS nano 2010, 4 (3), 1759-1767.
    (183) de Tymowski, B.; Liu, Y.; Meny, C.; Lefèvre, C.; Begin, D.; Nguyen, P.; Pham, C.; Edouard, D.; Luck, F.; Pham-Huu, C. Co–Ru/SiC impregnated with ethanol as an effective catalyst for the Fischer–Tropsch synthesis. Applied Catalysis A: General 2012, 419, 31-40.
    (184) Wang, A.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nature Reviews Chemistry 2018, 2 (6), 65-81.
    (185) Yang, M.; Li, S.; Wang, Y.; Herron, J. A.; Xu, Y.; Allard, L. F.; Lee, S.; Huang, J.; Mavrikakis, M.; Flytzani-Stephanopoulos, M. Catalytically active Au-O (OH) x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 2014, 346 (6216), 1498-1501.
    (186) Yang, M.; Liu, J.; Lee, S.; Zugic, B.; Huang, J.; Allard, L. F.; Flytzani-Stephanopoulos, M. A common single-site Pt (II)–O (OH) x–species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction. JACS 2015, 137 (10), 3470-3473.
    (187) Chen, L.; Sterbinsky, G. E.; Tait, S. L. Synthesis of platinum single-site centers through metal-ligand self-assembly on powdered metal oxide supports. J. Catal. 2018, 365, 303-312.
    (188) Zhang, L.; Spezzati, G.; Muravev, V.; Verheijen, M.; Zijlstra, B.; Filot, I.; Su, Y.; Chang, M. Improved Pd/CeO2 Catalysts for Low-Temperature NO Reduction: Activation of CeO2 Lattice Oxygen by Fe Doping. 2021.
    (189) Hai, X.; Xi, S.; Mitchell, S.; Harrath, K.; Xu, H.; Akl, D. F.; Kong, D.; Li, J.; Li, Z.; Sun, T. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nature Nanotechnology 2022, 17 (2), 174-181.
    (190) Ji, S.; Chen, Y.; Wang, X.; Zhang, Z.; Wang, D.; Li, Y. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120 (21), 11900-11955.
    (191) Zhou, Y.; Ma, C.; Wang, X.; Xiang, Z.; Yin, C.; Yan, W.; He, W.; Liu, Y.; Lu, C.; Li, X. Carbonyl-anchored single-atom palladium achieved on waste printing paper-derived carbon material by impregnation method: remarkable performance in selective oxidation of benzyl alcohol. Materials Today Chemistry 2023, 28, 101340.
    (192) Li, Z.; Saruyama, M.; Asaka, T.; Tatetsu, Y.; Teranishi, T. Determinants of crystal structure transformation of ionic nanocrystals in cation exchange reactions. Science 2021, 373 (6552), 332-337.
    (193) Li, X.; Ji, M.; Li, H.; Wang, H.; Xu, M.; Rong, H.; Wei, J.; Liu, J.; Liu, J.; Chen, W. Cation/anion exchange reactions toward the syntheses of upgraded nanostructures: principles and applications. Matter 2020, 2 (3), 554-586.
    (194) Ling, T.; Jaroniec, M.; Qiao, S. Z. Recent progress in engineering the atomic and electronic structure of electrocatalysts via cation exchange reactions. Adv. Mater. 2020, 32 (46), 2001866.
    (195) Holtus, T.; Helmbrecht, L.; Hendrikse, H. C.; Baglai, I.; Meuret, S.; Adhyaksa, G. W.; Garnett, E. C.; Noorduin, W. L. Shape-preserving transformation of carbonate minerals into lead halide perovskite semiconductors based on ion exchange/insertion reactions. Nature chemistry 2018, 10 (7), 740-745.
    (196) Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119 (5), 3296-3348.
    (197) Luo, J.; Waterhouse, G. I.; Peng, L.; Chen, Q. Recent progress in high-loading single-atom catalysts and their applications. Industrial Chemistry & Materials 2023.
    (198) Lok, M. Coprecipitation. Synthesis of solid catalysts 2009, 135-151.
    (199) Wang, Z.; Gu, L.; Song, L.; Wang, H.; Yu, R. Facile one-pot synthesis of MOF supported gold pseudo-single-atom catalysts for hydrogenation reactions. Materials Chemistry Frontiers 2018, 2 (5), 1024-1030.
    (200) Zhang, J.; Wu, X.; Cheong, W.-C.; Chen, W.; Lin, R.; Li, J.; Zheng, L.; Yan, W.; Gu, L.; Chen, C. Cation vacancy stabilization of single-atomic-site Pt1/Ni (OH) x catalyst for diboration of alkynes and alkenes. Nature communications 2018, 9 (1), 1002.
    (201) Ida, S.; Kim, N.; Ertekin, E.; Takenaka, S.; Ishihara, T. Photocatalytic reaction centers in two-dimensional titanium oxide crystals. JACS 2015, 137 (1), 239-244.
    (202) Liu, J. Catalysis by supported single metal atoms. Acs Catalysis 2017, 7 (1), 34-59.
    (203) Chen, H.; Fu, J.; Zhang, P.; Peng, H.; Abney, C. W.; Jie, K.; Liu, X.; Chi, M.; Dai, S. Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. Journal of Materials Chemistry A 2018, 6 (24), 11129-11133.
    (204) da Silva, A. G.; Rodrigues, T. S.; Haigh, S. J.; Camargo, P. H. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chem. Commun. 2017, 53 (53), 7135-7148.
    (205) Lucci, F. R.; Liu, J.; Marcinkowski, M. D.; Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Selective hydrogenation of 1, 3-butadiene on platinum–copper alloys at the single-atom limit. Nature communications 2015, 6 (1), 8550.
    (206) Cao, X.; Mirjalili, A.; Wheeler, J.; Xie, W.; Jang, B. W.-L. Investigation of the preparation methodologies of Pd-Cu single atom alloy catalysts for selective hydrogenation of acetylene. Frontiers of Chemical Science and Engineering 2015, 9, 442-449.
    (207) Chen, H.; Li, H.; Chen, S.; Sheng, L.; Zhang, Z.; Wu, W.; Fan, M.; Wang, L.; Yang, B. Atomic Pd Dispersion in Triangular Cu Nanosheets with Dominant (111) Plane as a Tandem Catalyst for Highly Efficient and Selective Electrodehalogenation. Applied Catalysis B: Environmental 2023, 122480.
    (208) Da, Y.; Jiang, R.; Tian, Z.; Han, X.; Chen, W.; Hu, W. The applications of single‐atom alloys in electrocatalysis: Progress and challenges. SmartMat 2023, 4 (1), e1136.
    (209) Han, Y.; Wang, Y.-G.; Chen, W.; Xu, R.; Zheng, L.; Zhang, J.; Luo, J.; Shen, R.-A.; Zhu, Y.; Cheong, W.-C. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction. JACS 2017, 139 (48), 17269-17272.
    (210) Chen, Z.; Zhang, Q.; Chen, W.; Dong, J.; Yao, H.; Zhang, X.; Tong, X.; Wang, D.; Peng, Q.; Chen, C. Single‐site AuI catalyst for silane oxidation with water. Adv. Mater. 2018, 30 (5), 1704720.
    (211) Li, X.; Bi, W.; Zhang, L.; Tao, S.; Chu, W.; Zhang, Q.; Luo, Y.; Wu, C.; Xie, Y. Single‐atom Pt as co‐catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28 (12), 2427-2431.
    (212) Fonseca, J.; Lu, J. Single-atom catalysts designed and prepared by the atomic layer deposition technique. ACS Catalysis 2021, 11 (12), 7018-7059.
    (213) Wang, Y.; Su, H.; He, Y.; Li, L.; Zhu, S.; Shen, H.; Xie, P.; Fu, X.; Zhou, G.; Feng, C. Advanced electrocatalysts with single-metal-atom active sites. Chem. Rev. 2020, 120 (21), 12217-12314.
    (214) Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C.; Li, J.; Wei, S.; Lu, J. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1, 3-butadiene. JACS 2015, 137 (33), 10484-10487.
    (215) Cheng, N.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B.; Li, R.; Sham, T.-K.; Liu, L.-M. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nature communications 2016, 7 (1), 13638.
    (216) Yang, Z.; Chen, C.; Zhao, Y.; Wang, Q.; Zhao, J.; Waterhouse, G. I.; Qin, Y.; Shang, L.; Zhang, T. Pt single atoms on CrN nanoparticles deliver outstanding activity and CO tolerance in the hydrogen oxidation reaction. Adv. Mater. 2023, 35 (1), 2208799.
    (217) Li, J.; Chen, C.; Xu, L.; Zhang, Y.; Wei, W.; Zhao, E.; Wu, Y.; Chen, C. Challenges and Perspectives of Single-Atom-Based Catalysts for Electrochemical Reactions. JACS Au 2023.
    (218) Chu, T.; Rong, C.; Zhou, L.; Mao, X.; Zhang, B.; Xuan, F. Progress and Perspectives of Single‐Atom Catalysts for Gas Sensing. Adv. Mater. 2023, 35 (3), 2206783.
    (219) Zhang, L.; Wang, A.; Wang, W.; Huang, Y.; Liu, X.; Miao, S.; Liu, J.; Zhang, T. Co–N–C catalyst for C–C coupling reactions: on the catalytic performance and active sites. ACS Catalysis 2015, 5 (11), 6563-6572.
    (220) Zhu, C.; Shi, Q.; Xu, B. Z.; Fu, S.; Wan, G.; Yang, C.; Yao, S.; Song, J.; Zhou, H.; Du, D. Hierarchically porous M–N–C (M= Co and Fe) single‐atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Advanced Energy Materials 2018, 8 (29), 1801956.
    (221) Zhou, Y.; Tao, X.; Chen, G.; Lu, R.; Wang, D.; Chen, M.-X.; Jin, E.; Yang, J.; Liang, H.-W.; Zhao, Y. Multilayer stabilization for fabricating high-loading single-atom catalysts. Nature communications 2020, 11 (1), 5892.
    (222) Wu, J.; Xiong, L.; Zhao, B.; Liu, M.; Huang, L. Densely populated single atom catalysts. Small Methods 2020, 4 (2), 1900540.
    (223) Shan, J.; Liao, J.; Ye, C.; Dong, J.; Zheng, Y.; Qiao, S. Z. The Dynamic Formation from Metal‐Organic Frameworks of High‐Density Platinum Single‐Atom Catalysts with Metal‐Metal Interactions. Angew. Chem. 2022, 134 (48), e202213412.
    (224) Zhang, F.; Zhu, Y.; Tang, C.; Chen, Y.; Qian, B.; Hu, Z.; Chang, Y. C.; Pao, C. W.; Lin, Q.; Kazemi, S. A. High‐Efficiency Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction Enabled by a Tungsten Single Atom Catalyst with Unique Terdentate N1O2 Coordination. Adv. Funct. Mater. 2022, 32 (16), 2110224.
    (225) Wu, Z.-Y.; Zhu, P.; Cullen, D. A.; Hu, Y.; Yan, Q.-Q.; Shen, S.-C.; Chen, F.-Y.; Yu, H.; Shakouri, M.; Arregui-Mena, J. D. A general synthesis of single atom catalysts with controllable atomic and mesoporous structures. Nature Synthesis 2022, 1 (8), 658-667.
    (226) Lu, J.; Aydin, C.; Browning, N. D.; Gates, B. C. Imaging isolated gold atom catalytic sites in zeolite NaY. Angew. Chem. Int. Ed. 2012, 24 (51), 5842-5846.
    (227) Kistler, J. D.; Chotigkrai, N.; Xu, P.; Enderle, B.; Praserthdam, P.; Chen, C. Y.; Browning, N. D.; Gates, B. C. A single‐site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. Angew. Chem. Int. Ed. 2014, 53 (34), 8904-8907.
    (228) Xiao, M.; Zhu, J.; Ma, L.; Jin, Z.; Ge, J.; Deng, X.; Hou, Y.; He, Q.; Li, J.; Jia, Q. Microporous framework induced synthesis of single-atom dispersed Fe-NC acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy. Acs Catalysis 2018, 8 (4), 2824-2832.
    (229) Huo, J.; Lu, L.; Shen, Z.; Liu, Y.; Guo, J.; Liu, Q.; Wang, Y.; Liu, H.; Wu, M.; Wang, G. A rational synthesis of single-atom iron–nitrogen electrocatalysts for highly efficient oxygen reduction reaction. Journal of Materials Chemistry A 2020, 8 (32), 16271-16282.
    (230) Liang, S.; Zou, L. C.; Zheng, L. J.; Li, F.; Wang, X. X.; Song, L. N.; Xu, J. J. Highly stable Co single atom confined in hierarchical carbon molecular sieve as efficient electrocatalysts in metal–air batteries. Advanced Energy Materials 2022, 12 (11), 2103097.
    (231) Zhang, M.; Wang, Y.-G.; Chen, W.; Dong, J.; Zheng, L.; Luo, J.; Wan, J.; Tian, S.; Cheong, W.-C.; Wang, D. Metal (hydr) oxides@ polymer core–shell strategy to metal single-atom materials. JACS 2017, 139 (32), 10976-10979.
    (232) Wang, B.; Wang, X.; Zou, J.; Yan, Y.; Xie, S.; Hu, G.; Li, Y.; Dong, A. Simple-cubic carbon frameworks with atomically dispersed iron dopants toward high-efficiency oxygen reduction. Nano Lett. 2017, 17 (3), 2003-2009.
    (233) Zheng, Y.; Jiao, Y.; Zhu, Y.; Cai, Q.; Vasileff, A.; Li, L. H.; Han, Y.; Chen, Y.; Qiao, S.-Z. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. JACS 2017, 139 (9), 3336-3339.
    (234) Huang, Z.; Gu, X.; Cao, Q.; Hu, P.; Hao, J.; Li, J.; Tang, X. Catalytically active single‐atom sites fabricated from silver particles. Angew. Chem. 2012, 124 (17), 4274-4279.
    (235) Xiong, H.; Lin, S.; Goetze, J.; Pletcher, P.; Guo, H.; Kovarik, L.; Artyushkova, K.; Weckhuysen, B. M.; Datye, A. K. Thermally stable and regenerable platinum–tin clusters for propane dehydrogenation prepared by atom trapping on ceria. Angew. Chem. 2017, 129 (31), 9114-9119.
    (236) Yang, F.; Song, P.; Liu, X.; Mei, B.; Xing, W.; Jiang, Z.; Gu, L.; Xu, W. Highly efficient CO2 electroreduction on ZnN4‐based single‐atom catalyst. Angew. Chem. 2018, 130 (38), 12483-12487.
    (237) Pan, Y.; Lin, R.; Chen, Y.; Liu, S.; Zhu, W.; Cao, X.; Chen, W.; Wu, K.; Cheong, W.-C.; Wang, Y. Design of single-atom Co–N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. JACS 2018, 140 (12), 4218-4221.
    (238) Peng, Y.; Lu, B.; Chen, S. Carbon‐supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 2018, 30 (48), 1801995.
    (239) Tian, Z.; Priest, C.; Chen, L. Recent progress in the theoretical investigation of electrocatalytic reduction of CO2. Advanced Theory and Simulations 2018, 1 (5), 1800004.
    (240) Vasileff, A.; Xu, C.; Jiao, Y.; Zheng, Y.; Qiao, S.-Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4 (8), 1809-1831.
    (241) Cui, H.; Guo, Y.; Guo, L.; Wang, L.; Zhou, Z.; Peng, Z. Heteroatom-doped carbon materials and their composites as electrocatalysts for CO 2 reduction. Journal of Materials Chemistry A 2018, 6 (39), 18782-18793.
    (242) Li, J.; Che, F.; Pang, Y.; Zou, C.; Howe, J. Y.; Burdyny, T.; Edwards, J. P.; Wang, Y.; Li, F.; Wang, Z. Copper adparticle enabled selective electrosynthesis of n-propanol. Nature communications 2018, 9 (1), 4614.
    (243) Yan, Y.; Zhao, Z.; Zhao, J.; Tang, W.; Huang, W.; Lee, J.-M. Atomic-thin hexagonal CuCo nanocrystals with d-band tuning for CO 2 reduction. Journal of Materials Chemistry A 2021, 9 (12), 7496-7502.
    (244) Meng, D. L.; Zhang, M. D.; Si, D. H.; Mao, M. J.; Hou, Y.; Huang, Y. B.; Cao, R. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel–nitrogen site/copper nanoparticle catalysts. Angew. Chem. 2021, 133 (48), 25689-25696.
    (245) Weng, Z.; Wu, Y.; Wang, M.; Jiang, J.; Yang, K.; Huo, S.; Wang, X.-F.; Ma, Q.; Brudvig, G. W.; Batista, V. S. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nature communications 2018, 9 (1), 415.
    (246) Karapinar, D.; Huan, N. T.; Ranjbar Sahraie, N.; Li, J.; Wakerley, D.; Touati, N.; Zanna, S.; Taverna, D.; Galvão Tizei, L. H.; Zitolo, A. Electroreduction of CO2 on single‐site copper‐nitrogen‐doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 2019, 58 (42), 15098-15103.
    (247) Zhang, Z.; Chen, S.; Zhu, J.; Ye, C.; Mao, Y.; Wang, B.; Zhou, G.; Mai, L.; Wang, Z.; Liu, X. Charge-Separated Pdδ−–Cuδ+ Atom Pairs Promote CO2 Reduction to C2. Nano Lett. 2023.
    (248) Feng, J.; Gao, H.; Zheng, L.; Chen, Z.; Zeng, S.; Jiang, C.; Dong, H.; Liu, L.; Zhang, S.; Zhang, X. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nature communications 2020, 11 (1), 4341.
    (249) Eilert, A.; Roberts, F. S.; Friebel, D.; Nilsson, A. Formation of copper catalysts for CO2 reduction with high ethylene/methane product ratio investigated with in situ X-ray absorption spectroscopy. The journal of physical chemistry letters 2016, 7 (8), 1466-1470.
    (250) Xu, Y.; Li, F.; Xu, A.; Edwards, J. P.; Hung, S.-F.; Gabardo, C. M.; O’Brien, C. P.; Liu, S.; Wang, X.; Li, Y. Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly. Nature communications 2021, 12 (1), 2932.
    (251) Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy & Environmental Science 2010, 3 (9), 1311-1315.
    (252) Hori, Y.; Murata, A.; Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1989, 85 (8), 2309-2326.
    (253) Durand, W. J.; Peterson, A. A.; Studt, F.; Abild-Pedersen, F.; Nørskov, J. K. Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf. Sci. 2011, 605 (15-16), 1354-1359.
    (254) Schouten, K.; Kwon, Y.; Van Der Ham, C.; Qin, Z.; Koper, M. A new mechanism for the selectivity to C 1 and C 2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chemical Science 2011, 2 (10), 1902-1909.
    (255) Ren, D.; Fong, J.; Yeo, B. S. The effects of currents and potentials on the selectivities of copper toward carbon dioxide electroreduction. Nature communications 2018, 9 (1), 925.
    (256) Fan, Q.; Zhang, M.; Jia, M.; Liu, S.; Qiu, J.; Sun, Z. Electrochemical CO2 reduction to C2+ species: heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Materials today energy 2018, 10, 280-301.
    (257) Zhang, H.; Li, J.; Cheng, M.-J.; Lu, Q. CO electroreduction: current development and understanding of Cu-based catalysts. Acs Catalysis 2018, 9 (1), 49-65.
    (258) Gao, D.; Arán-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nature Catalysis 2019, 2 (3), 198-210.
    (259) Zheng, Y.; Vasileff, A.; Zhou, X.; Jiao, Y.; Jaroniec, M.; Qiao, S.-Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. JACS 2019, 141 (19), 7646-7659.
    (260) Jaster, T.; Gawel, A.; Siegmund, D.; Holzmann, J.; Lohmann, H.; Klemm, E.; Apfel, U.-P. Electrochemical CO2 Reduction towards Multicarbon Alcohols-The Microscopic World of Catalysts & Process Conditions. Iscience 2022, 104010.
    (261) Tan, Y. C.; Quek, W. K.; Kim, B.; Sugiarto, S.; Oh, J.; Kai, D. Pitfalls and Protocols: Evaluating Catalysts for CO2 Reduction in Electrolyzers Based on Gas Diffusion Electrodes. ACS Energy Letters 2022, 7 (6), 2012-2023.
    (262) Liang, S.; Altaf, N.; Huang, L.; Gao, Y.; Wang, Q. Electrolytic cell design for electrochemical CO2 reduction. Journal of CO2 Utilization 2020, 35, 90-105.
    (263) Gabardo, C. M.; O’Brien, C. P.; Edwards, J. P.; McCallum, C.; Xu, Y.; Dinh, C.-T.; Li, J.; Sargent, E. H.; Sinton, D. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 2019, 3 (11), 2777-2791.
    (264) De Luna, P.; Quintero-Bermudez, R.; Dinh, C.-T.; Ross, M. B.; Bushuyev, O. S.; Todorović, P.; Regier, T.; Kelley, S. O.; Yang, P.; Sargent, E. H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nature Catalysis 2018, 1 (2), 103-110.
    (265) Lee, S. Y.; Jung, H.; Kim, N.-K.; Oh, H.-S.; Min, B. K.; Hwang, Y. J. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. JACS 2018, 140 (28), 8681-8689.
    (266) Ma, G.; Syzgantseva, O. A.; Huang, Y.; Stoian, D.; Zhang, J.; Yang, S.; Luo, W.; Jiang, M.; Li, S.; Chen, C. A hydrophobic Cu/Cu2O sheet catalyst for selective electroreduction of CO to ethanol. Nature Communications 2023, 14 (1), 501.
    (267) Gu, J.; Hsu, C.-S.; Bai, L.; Chen, H. M.; Hu, X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364 (6445), 1091-1094.
    (268) Jouny, M.; Luc, W.; Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nature Catalysis 2018, 1 (10), 748-755.
    (269) Li, J.; Wang, Z.; McCallum, C.; Xu, Y.; Li, F.; Wang, Y.; Gabardo, C. M.; Dinh, C.-T.; Zhuang, T.-T.; Wang, L. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nature Catalysis 2019, 2 (12), 1124-1131.
    (270) Wang, L.; Nitopi, S.; Wong, A. B.; Snider, J. L.; Nielander, A. C.; Morales-Guio, C. G.; Orazov, M.; Higgins, D. C.; Hahn, C.; Jaramillo, T. F. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nature Catalysis 2019, 2 (8), 702-708.
    (271) Rabiee, H.; Heffernan, J. K.; Ge, L.; Zhang, X.; Yan, P.; Marcellin, E.; Hu, S.; Zhu, Z.; Wang, H.; Yuan, Z. Tuning Flow-through Cu-based Hollow Fiber Gas-diffusion Electrode for High-efficiency Carbon Monoxide (CO) Electroreduction to C2+ products. Applied Catalysis B: Environmental 2023, 122589.
    (272) Li, S.; Guan, A.; Yang, C.; Peng, C.; Lv, X.; Ji, Y.; Quan, Y.; Wang, Q.; Zhang, L.; Zheng, G. Dual-atomic Cu sites for electrocatalytic CO reduction to C2+ products. ACS Materials Letters 2021, 3 (12), 1729-1737.
    (273) Zhang, Z.; Huang, X.; Chen, Z.; Zhu, J.; Endrődi, B.; Janáky, C.; Deng, D. Membrane electrode assembly for electrocatalytic CO2 reduction: Principle and application. Angew. Chem. 2023, e202302789.
    (274) Rosca, I. D.; Watari, F.; Uo, M.; Akasaka, T. Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 2005, 43 (15), 3124-3131.
    (275) Kim, Y. H.; Lee, H. K.; Park, Y.; Gopalan, A.; Lee, K.-P.; Choi, S.-J. Preparation of a Sulfonated Multiwalled Carbon Nanotube/Nafion® Nanocomposite Membrane for Direct Methanol Fuel Cells. Journal of nanoelectronics and optoelectronics 2011, 6 (3), 217-222.
    (276) Hwang, B. J.; Senthil Kumar, S. M.; Chen, C.-H.; Chang, R.-W.; Liu, D.-G.; Lee, J.-F. Size and alloying extent dependent physiochemical properties of Pt− Ag/C nanoparticles synthesized by the ethylene glycol method. The Journal of Physical Chemistry C 2008, 112 (7), 2370-2377.
    (277) Perdew, J.; Burke, K.; Ernzerhof, M. of Physics, D.; Quantum Theory Group Tulane University, NOL 70118 J. Phys. Rev. Lett 1996, 77 (18), 3865-3868.
    (278) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59 (3), 1758.
    (279) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics 2010, 132 (15), 154104.
    (280) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. Journal of computational chemistry 2011, 32 (7), 1456-1465.
    (281) Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Physical Review B 1993, 47 (1), 558-561.
    (282) Hongsirikarn, K.; Goodwin Jr, J. G.; Greenway, S.; Creager, S. Effect of cations (Na+, Ca2+, Fe3+) on the conductivity of a Nafion membrane. J. Power Sources 2010, 195 (21), 7213-7220.
    (283) Pratap Singh, B.; Choudhary, V.; Teotia, S.; Kumar Gupta, T.; Nand Singh, V.; Rangnath Dhakate, S.; Behari Mathur, R. Solvent free, efficient, industrially viable, fast dispersion process based amine modified MWCNT reinforced epoxy composites of superior mechanical properties. Advanced Materials Letters 2015, 6 (2), 104-113.
    (284) Liu, Y.-L.; Su, Y.-H.; Chang, C.-M.; Wang, D.-M.; Lai, J.-Y. Preparation and applications of Nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells. J. Mater. Chem. 2010, 20 (21), 4409-4416.
    (285) Montanheiro, T. L. d. A.; Cristóvan, F. H.; Machado, J. P. B.; Tada, D. B.; Durán, N.; Lemes, A. P. Effect of MWCNT functionalization on thermal and electrical properties of PHBV/MWCNT nanocomposites. J. Mater. Res. 2015, 30 (1).
    (286) Adjemian, K.; Lee, S.; Srinivasan, S.; Benziger, J.; Bocarsly, A. B. Silicon oxide nafion composite membranes for proton-exchange membrane fuel cell operation at 80-140 C. J. Electrochem. Soc. 2002, 149 (3), A256.
    (287) Issa, M. A.; Abidin, Z. Z.; Sobri, S.; Rashid, S. A.; Mahdi, M. A.; Ibrahim, N. A. Fluorescent recognition of Fe 3+ in acidic environment by enhanced-quantum yield N-doped carbon dots: optimization of variables using central composite design. Scientific reports 2020, 10 (1), 1-18.
    (288) Mukaddam, M.; Wang, Y.; Pinnau, I. Structural, Thermal, and Gas-Transport Properties of Fe3+ Ion-Exchanged Nafion Membranes. ACS omega 2018, 3 (7), 7474-7482.
    (289) Konnola, R.; Joseph, K. Effect of side-wall functionalisation of multi-walled carbon nanotubes on the thermo-mechanical properties of epoxy composites. RSC advances 2016, 6 (28), 23887-23899.
    (290) Friedman, A. K.; Shi, W.; Losovyj, Y.; Siedle, A. R.; Baker, L. A. Mapping microscale chemical heterogeneity in Nafion membranes with X-ray photoelectron spectroscopy. J. Electrochem. Soc. 2018, 165 (11), H733.
    (291) Xu, H.; Rebollar, D.; He, H.; Chong, L.; Liu, Y.; Liu, C.; Sun, C.-J.; Li, T.; Muntean, J. V.; Winans, R. E. Highly selective electrocatalytic CO 2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nature Energy 2020, 5 (8), 623-632.
    (292) Pan, F.; Li, B.; Sarnello, E.; Hwang, S.; Gang, Y.; Feng, X.; Xiang, X.; Adli, N. M.; Li, T.; Su, D. Boosting CO2 reduction on Fe-NC with sulfur incorporation: Synergistic electronic and structural engineering. Nano Energy 2020, 68, 104384.
    (293) He, X.-Q.; Cui, Y.-Y.; Zhang, Y.; Li, H.-T.; Yang, C.-X. Decoration of Fe3+ on carboxyl microporous organic network to fabricate magnetic porous carbon for efficient adsorption and removal of cationic dyes. Chemical Engineering Journal Advances 2021, 6, 100092.
    (294) Jiang, P.; Jiang, K.; Tranca, D.; Zhu, J.; Qiu, F.; Ke, C.; Lu, C.; Kymakis, E.; Zhuang, X. Rational Control of Topological Defects in Porous Carbon for High‐Efficiency Carbon Dioxide Conversion. Advanced Materials Interfaces 2021, 8 (7), 2100051.
    (295) Zhao, C.; Dai, X.; Yao, T.; Chen, W.; Wang, X.; Wang, J.; Yang, J.; Wei, S.; Wu, Y.; Li, Y. Ionic exchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2. JACS 2017, 139 (24), 8078-8081.
    (296) Karapinar, D.; Zitolo, A.; Huan, T. N.; Zanna, S.; Taverna, D.; Galvão Tizei, L. H.; Giaume, D.; Marcus, P.; Mougel, V.; Fontecave, M. Carbon‐Nanotube‐Supported Copper Polyphthalocyanine for Efficient and Selective Electrocatalytic CO2 Reduction to CO. ChemSusChem 2020, 13 (1), 173-179.
    (297) Zhang, B.; Zhang, J.; Shi, J.; Tan, D.; Liu, L.; Zhang, F.; Lu, C.; Su, Z.; Tan, X.; Cheng, X. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nature communications 2019, 10 (1), 1-8.
    (298) Feng, J.; Gao, H.; Zheng, L.; Chen, Z.; Zeng, S.; Jiang, C.; Dong, H.; Liu, L.; Zhang, S.; Zhang, X. A Mn-N 3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO 2 electroreduction. Nature communications 2020, 11 (1), 1-8.
    (299) Guo, W.; Wang, Z.; Wang, X.; Wu, Y. General Design Concept for Single‐Atom Catalysts toward Heterogeneous Catalysis. Adv. Mater. 2021, 2004287.
    (300) Zhao, K.; Nie, X.; Wang, H.; Chen, S.; Quan, X.; Yu, H.; Choi, W.; Zhang, G.; Kim, B.; Chen, J. G. Selective electroreduction of CO 2 to acetone by single copper atoms anchored on N-doped porous carbon. Nature communications 2020, 11 (1), 1-10.
    (301) Zhu, S.; Li, T.; Cai, W.-B.; Shao, M. CO2 electrochemical reduction as probed through infrared spectroscopy. ACS Energy Letters 2019, 4 (3), 682-689.
    (302) Chen, K.; Cao, M.; Ni, G.; Chen, S.; Liao, H.; Zhu, L.; Li, H.; Fu, J.; Hu, J.; Cortés, E. Nickel polyphthalocyanine with electronic localization at the nickel site for enhanced CO2 reduction reaction. Applied Catalysis B: Environmental 2022, 306, 121093.
    (303) Comeau, Z. J.; Rice, N. A.; Harris, C. S.; Shuhendler, A. J.; Lessard, B. H. Organic Thin‐Film Transistors as Cannabinoid Sensors: Effect of Analytes on Phthalocyanine Film Crystallization. Adv. Funct. Mater. 2022, 32 (7), 2107138.
    (304) Su, X.; Jiang, Z.; Zhou, J.; Liu, H.; Zhou, D.; Shang, H.; Ni, X.; Peng, Z.; Yang, F.; Chen, W. Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nature Communications 2022, 13 (1), 1322.
    (305) Xu, Y.-T.; Xie, M.-Y.; Zhong, H.; Cao, Y. In Situ Clustering of Single-Atom Copper Precatalysts in a Metal-Organic Framework for Efficient Electrocatalytic Nitrate-to-Ammonia Reduction. ACS Catalysis 2022, 12 (14), 8698-8706.
    (306) Liu, C.; Zhang, X.-D.; Huang, J.-M.; Guan, M.-X.; Xu, M.; Gu, Z.-Y. In Situ Reconstruction of Cu–N Coordinated MOFs to Generate Dispersive Cu/Cu2O Nanoclusters for Selective Electroreduction of CO2 to C2H4. ACS Catalysis 2022, 12, 15230-15240.
    (307) Liu, P.; Huang, Z.; Gao, X.; Hong, X.; Zhu, J.; Wang, G.; Wu, Y.; Zeng, J.; Zheng, X. Synergy between palladium single atoms and nanoparticles via hydrogen spillover for enhancing CO2 photoreduction to CH4. Adv. Mater. 2022, 34 (16), 2200057.
    (308) Wang, Q.; Liu, K.; Hu, K.; Cai, C.; Li, H.; Li, H.; Herran, M.; Lu, Y.-R.; Chan, T.-S.; Ma, C. Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO. Nature Communications 2022, 13 (1), 1-10.
    (309) Wang, P.; Yang, H.; Tang, C.; Wu, Y.; Zheng, Y.; Cheng, T.; Davey, K.; Huang, X.; Qiao, S.-Z. Boosting electrocatalytic CO2–to–ethanol production via asymmetric C–C coupling. Nature Communications 2022, 13 (1), 1-11.
    (310) Zhong, H.; Ghorbani-Asl, M.; Ly, K. H.; Zhang, J.; Ge, J.; Wang, M.; Liao, Z.; Makarov, D.; Zschech, E.; Brunner, E. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nature communications 2020, 11 (1), 1-10.
    (311) George, E.; Raabe, D.; Ritchie, R. Nature Rev. Mater 2019, 4, 515-534.
    (312) Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448-511.
    (313) Zhang, W.; Liaw, P. K.; Zhang, Y. Science and technology in high-entropy alloys. Sci. China Mater 2018, 61 (1), 2-22.
    (314) Li, C.; Li, J.; Zhao, M.; Jiang, Q. Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. J. Alloys Compd. 2009, 475 (1-2), 752-757.
    (315) Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345 (6201), 1153-1158.
    (316) Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6 (5), 299-303.
    (317) Cantor, B.; Chang, I.; Knight, P.; Vincent, A. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A 2004, 375, 213-218.

    QR CODE