簡易檢索 / 詳目顯示

研究生: 楊絲亘
Ssu-Hsuan Yang
論文名稱: 聚丙烯/稻殼複合材料之押出發泡研究
Foam Extrusion of Polypropylene-Rice Husk Composites using CO2 as the Blowing Agent
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 吳昌謀
none
朱建嘉
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 100
中文關鍵詞: 稻殼天然纖維複合材料押出發泡偶合劑二氧化碳聚丙烯
外文關鍵詞: rice husk, natural fiber composite, extrusion foam, coupling agent, scarbon dioxide, polypropylene
相關次數: 點閱:249下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 天然纖維具有低價格及可生物分解性等優點,使天然纖維複合材廣受應用,然而,其中天然纖維複合材料的密度通常高於其高分子基材,因此限制了其用途,此缺點可以藉由發泡改善,本研究經由單螺桿押出機對稻殼/聚丙烯天然纖維複合材料進行押出發泡,使用的發泡劑為超臨界二氧化碳,並探討偶合劑、螺桿轉速、CO2含量和模頭溫度對於泡孔結構的影響。由於稻殼在加工過程中會釋放出水氣及有機揮發物,並惡化泡孔型態,因此藉由TGA模擬稻殼的熱降解程度。實驗結果發現添加偶合劑聚丙烯馬來酸酐(PP-g-MA)後,泡孔型態明顯改善,並且降低複合泡材的密度及孔徑,而未含有偶合劑的複合材,其泡材密度對於螺桿轉速與CO2含量具有相關性,但加入偶合劑後其相關性卻消失,此外,泡材密度會隨著模頭溫度下降而降低,而在本實驗裡最低的泡材密度可降至0.6 g/cm3,然而當溫度低於160°C之後,押出物會開始發生明顯的熔體斷裂情形。另外,當模頭溫度降至147°C時,可以觀察到泡孔型態呈現像花束般結構,推估是因為高分子已開始結晶造成如此的結構。


    The biodegradability and low cost of natural fibers make them attractive for composite applications. However, the density of natural fibers composites (NFCs) is higher than that of polymers, which limits the application of NFCs. This drawback could be reduced by foaming. In this study, a polypropylene (PP)/rice husk NFC was extrusion foamed by a single-screw extruder using CO2 as the blowing agent. The effects of coupling agent, screw rotation speed, CO2 content, and die temperature on the cell structure were studied. Because moisture and volatile organic compounds from rice husks could be released during the extrusion process and deteriorate the cell structure, the thermal degradation behavior of rice husks was simulated using thermogravimetric analysis (TGA). The experiment results showed that the addition of a coupling agent improved the cell morphology and reduced the density and cell size of the composite. Before the coupling agent was added, there was a clear relation between the foam density and both the screw speed and the CO2 loading level. However, the relation disappeared after the coupling agent was added. The foam density decreased with the decreasing die temperature. The lowest foam density achieved in this experiment was 0.6 g/cm3. Melt fracture phenomena were observed when the die temperature was below 160°C. In addition, a bouquet-like cell structure was observed at low die temperature of 147°C, which may result from the PP crystallization.

    論文提要內容 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章、緒論 1 1.1 前言 1 1.2 研究動機 3 第二章、相關理論與文獻回顧 4 2.1 塑膠 4 2.1.1 聚丙烯(Polypropylene) 6 2.2 天然纖維 10 2.2.1 纖維 10 2.2.2 天然纖維 12 2.2.3 稻殼 21 2.3 天然纖維複合材料 23 2.3.1 複合材料 23 2.3.2 天然纖維複合材料 26 2.4 天然纖維複合發泡材料 29 2.4.1 發泡材料簡介 29 2.4.2 發泡劑 32 2.4.3 押出發泡(foam extrusion) 35 2.4.4 天然纖維複合材發泡程序 42 2.4.5 天然纖維複合材料之押出發泡文獻回顧 45 第三章、實驗方法 52 3.1 實驗藥品及材料 52 3.2 實驗儀器 55 3.3實驗流程 58 3.4 實驗步驟 59 3.4.1 樣品比例 59 3.4.2 聚丙烯/稻殼天然纖維複合材料之製備 60 3.4.3 押出發泡 62 3.5 測試方法 68 3.5.1 熱重損失分析儀 (Thermogravimetry Analysis, TGA) 68 3.5.2 示差掃描量熱儀 (Differential scanning calorimetry, DSC) 69 3.5.3 掃描式電子顯微鏡 (scanning electron microscope, SEM) 69 3.5.4 泡孔孔徑(cell size)計算 70 3.5.5 泡孔密度(cell density)計算 70 3.5.6 泡材密度(foam density)測量 71 第四章、結果與討論 72 4.1 稻殼粉之熱重損失分析(TGA) 72 4.2 偶合劑與操作變數對於發泡型態的影響 75 4.2.1 泡孔孔徑(cell size)的變化 75 4.2.2 泡孔密度(cell density)的變化 81 4.2.3 泡材密度(foam density)的變化 82 4.3 模頭溫度對於發泡型態的影響 83 4.3.1 泡材密度(foam density)的變化 83 4.3.2 泡孔密度(cell density)及泡孔孔徑(cell size)的變化 84 4.3.3 泡孔型態的變化 86 第五章、結論 89 參考文獻 91

    1.Bledzki, A.K. and Gassan, J., Composites reinforced with cellulose based fibres. Progress in Polymer Science (Oxford), 1999. 24(2): p. 221-274.
    2.Guo, G., Lee, Y.H., Rizvi, G.M., and Park, C.B., Influence of wood fiber size on extrusion foaming of wood fiber/HDPE composites. Journal of Applied Polymer Science, 2008. 107(6): p. 3505-3511.
    3.Chtourou, H., Riedl, B., and Ait-Kadi, A., Reinforcement of recycled polyolefins with wood fibers. Journal of Reinforced Plastics and Composites, 1992. 11(4): p. 372-394.
    4.Raj, R.G., Kokta, B.V., Groleau, G., and Daneault, C., Use of wood fiber as a filler in polyethylene. Studies on mechanical properties. Plastics and Rubber Processing and Applications, 1989. 11(4): p. 215-221.
    5.Park, B.D. and Balatinecz, J.J., Effects of impact modification on the mechanical properties of wood-fiber thermoplastic composites with high impact polypropylene (HIPP). Journal of Thermoplastic Composite Materials, 1996. 9(4): p. 342-364.
    6.Matuana, L.M., Park, C.B., and Bauvhnecz, J.J., Cell morphology and property relationships of microcellular foamed PVC/wood-fiber composites. Polymer Engineering and Science, 1998. 38(11): p. 1862-1872.
    7.Matuana, L.M., Park, C.B., and Balatinecz, J.J., Processing and cell morphology relationships for microcellular foamed PVC/wood-fiber composites. Polymer Engineering and Science, 1997. 37(7): p. 1137-1147.
    8.Rizvi, G.M., Park, C.B., and Guo, G., Strategies for processing wood plastic composites with chemical blowing agents. Journal of Cellular Plastics, 2008. 44(2): p. 125-137.
    9.Park, C.B., Behravesh, A.H., and Venter, R.D., Low density microcellular foam processing in extrusion using CO2. Polymer Engineering and Science, 1998. 38(11): p. 1812-1823.
    10.Leung, S.N., Wong, A., Guo, Q.P., Park, C.B., and Zong, J.H., Change in the critical nucleation radius and its impact on cell stability during polymeric foaming processes. Chemical Engineering Science, 2009. 64(23): p. 4899-4907.
    11.Leung, S.N., Park, C.B., Xu, D., Li, H., and Fenton, R.G., Computer simulation of bubble-growth phenomena in foaming. Industrial and Engineering Chemistry Research, 2006. 45(23): p. 7823-7831.
    12.Bledzki, A.K. and Faruk, O., Injection moulded microcellular wood fibre-polypropylene composites. Composites Part A: Applied Science and Manufacturing, 2006. 37(9): p. 1358-1367.
    13.Cooper, A.I., Polymer synthesis and processing using supercritical carbon dioxide. Journal of Materials Chemistry, 2000. 10(2): p. 207-234.
    14.Tomasko, D.L., Li, H., Liu, D., Han, X., Wingert, M.J., Lee, L.J., and Koelling, K.W., A review of CO2 applications in the processing of polymers. Industrial and Engineering Chemistry Research, 2003. 42(25): p. 6431-6456.
    15.Rizvi, G.M., Park, C.B., Lin, W.S., Guo, G., and Pop-Iliev, R., expansion mechanisms of plastic/wood-flour composite foams with moisture, dissolved gaseous volatiles, and undissolved gas bubbles. Polymer Engineering and Science, 2003. 43(7): p. 1347-1360.
    16.Jawaid, M. and Khalil, H., Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydrate Polymers, 2011. 86(1): p. 1-18.
    17.Mallick, P.K., Fiber-reinforced composites: materials, manufacturing, and design, third edition. CRC Press: Boca Raton, FL, 2007.
    18.謝俊雄。塑膠工程學。文京圖書: 台北,1991.
    19.高木謙行。聚丙烯樹脂PP原理與實用。復漢出版社: 台南,1989.
    20.Morris, P.J., Polymer pioneers: a popular history of the science and technology of large molecules. Chemical Heritage Foundation: Philadelphia,2005.
    21.Stokke, D.D., Wu, Q., and Han, G., Wood as a lignocellulose exemplar, in introduction to wood and natural fiber composites. John Wiley and Sons Ltd: UK, 2013. p. 61-84.
    22.聚丙烯. https://zh.wikipedia.org/wiki/%E8%81%9A%E4%B8%99%E7%83%AF.
    23.Klyosov, A.A., Wood-plastic composites. Wiley: Hoboken, New Jersey, 2007.
    24.Thirtha, V., Lehman, R., and Nosker, T., Glass transition phenomena in melt-processed polystyrene/polypropylene blends. Polymer Engineering and Science, 2005. 45(9): p. 1187-1193.
    25.盧江、梁暉。高分子化學。化學工業出版社: 北京,2010.
    26.Wypych, G., Handbook of Material Weathering, Third Edition. ChemTec Publishing: Ontario, Canada, 2003.
    27.Gurunathan, T., Mohanty, S., and Nayak, S.K., A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 2015. 77: p. 1-25.
    28.魯博、張林文、曾竟成。天然纖維複合材料。化學工業出版社: 北京,2005.
    29.Harte, J., Holdren, C., Schneider, R., and Shirley, C., Toxics a to z: a guide to everyday pollution hazards. University of California Press: Berkeley, 1991.
    30.范堯明。紡織材料與檢測。學林出版社: 上海, 2012.
    31.Faruk, O. and Sain, M., Biofiber reinforcements in composite materials. Elsevier Science: Cambridge, 2014.
    32.Ramamoorthy, S.K., Skrifvars, M., and Persson, A., A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Polymer Reviews, 2015. 55(1): p. 107-162.
    33.Fengel, D. and Wegener, G., Wood: chemistry, ultrastructure, reactions. De Gruyter: Berlin, New York, 1983.
    34.Kalia, S., Kaith, B.S., and Kaur, I., Cellulose fibers: bio- and nano-polymer composites: green chemistry and technology. Springer Berlin Heidelberg: Berlin, Heidelberg, 2011.
    35.Rong, M.Z., Zhang, M.Q., Liu, Y., Yang, G.C., and Zeng, H.M., The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and Technology, 2001. 61(10): p. 1437-1447.
    36.Fuqua, M.A., Huo, S., and Ulven, C.A., Natural fiber reinforced composites. Polymer Reviews, 2012. 52(3-4): p. 259-320.
    37.Alvarez, V.A., Fraga, A.N., and Vazquez, A., Effects of the moisture and fiber content on the mechanical properties of biodegradable polymer-sisal fiber biocomposites. Journal of Applied Polymer Science, 2004. 91(6): p. 4007-4016.
    38.Akil, H.M., Omar, M.F., Mazuki, A.A.M., Safiee, S., Ishak, Z.A.M., and Abu Bakar, A., Kenaf fiber reinforced composites: a review. Materials and Design, 2011. 32(8-9): p. 4107-4121.
    39.Trade and markets division food and agriculture organization of the united nations. FAO rice market monitor April 2016.
    40.Bledzki, A.K. and Gassan, J., Composites reinforced with cellulose based fibres. Progress in Polymer Science, 1999. 24(2): p. 221-274.
    41.Chandrasekhar, S., Satyanarayana, K.G., Pramada, P.N., Raghavan, P., and Gupta, T.N., Processing, properties and applications of reactive silica from rice husk - an overview. Journal of Materials Science, 2003. 38(15): p. 3159-3168.
    42.馮小明、張崇才。複合材料。重慶大學出版社: 重慶,2007.
    43.游錫揚。纖維複合材料。國彰出版: 台中,1987.
    44.Peters, S.T. ed., Introduction, composite basics and road map, in handbook of composites. 1998, Springer US: Boston, MA. p. 1-20.
    45.Niska, K.O. and Sain, M., Wood-polymer composites. Elsevier Science: Cambridge, 2008.
    46.Mohanty, A.K., Misra, M., and Drzal, L.T., Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Composite Interfaces, 2001. 8(5): p. 313-343.
    47.Yeh, S.K., Hsieh, C.C., Chang, H.C., Yen, C.C.C., and Chang, Y.C., Synergistic effect of coupling agents and fiber treatments on mechanical properties and moisture absorption of polypropylene-rice husk composites and their foam. Composites Part A: Applied Science and Manufacturing, 2015. 68: p. 313-322.
    48.謝家竣。高抗衝擊強度之稻殼/聚丙烯天然纖維複合材料製備及研究。碩士論文,國立台北科技大學化學工程研究所,台北,102.
    49.Chapple, S. and Anandjiwala, R., Flammability of natural fiber-reinforced composites and strategies for fire retardancy: A review. Journal of Thermoplastic Composite Materials, 2010. 23(6): p. 871-893.
    50.張筱青。稻殼/聚丙烯天然纖維複合材料之阻燃性質研究。碩士論文,國立台北科技大學化學工程研究所,台北,103.
    51.Netravali, A.N., Huang, X., and Mizuta, K., Advanced 'green' composites. Advanced Composite Materials: The Official Journal of the Japan Society of Composite Materials, 2007. 16(4): p. 269-282.
    52.Těšinova, P., Advances in Composite Materials - Analysis of Natural and Man-Made Materials, InTech: Rijeka, Croatia, 2011.
    53.Lee, S.T. and Park, C.B., Foam extrusion: principles and practice, second edition. Taylor and Francis: Boca Raton, FL, 2014.
    54.Georg, M.C. and Gudbrand, T.J., Heat insulation. 1935, U.S. Patent 2023204.
    55.Johnston, F.L., Synthetic spongy material. 1941, U.S. Patent 2256483.
    56.Martini-Vvedensky, J.E., Suh, N.P., and Waldman, F.A., Microcellular closed cell foams and their method of manufacture. 1984, U.S. Patent 4473665.
    57.Lee, L.J., Zeng, C.C., Cao, X., Han, X.M., Shen, J., and Xu, G.J., Polymer nanocomposite foams. Composites Science and Technology, 2005. 65(15-16): p. 2344-2363.
    58.Okolieocha, C., Raps, D., Subramaniam, K., and Altstadt, V., Microcellular to nanocellular polymer foams: Progress (2004-2015) and future directions - a review. European Polymer Journal, 2015. 73: p. 500-519.
    59.Amending Directive 2002/72/EC. Official Journal of the European Union.
    (http://www.contactalimentaire.com/fileadmin/ImageFichier_Archive/contact_alimentaire/Fichiers_Documents/Directives_anglaises/Dir_2002_72_Consol_6_EN.pdf)
    60.Bledzki, A.K. and Faruk, O., Influence of processing temperature on microcellular injection-moulded wood-polypropylene composites. Macromolecular Materials and Engineering, 2006. 291(10): p. 1226-1232.
    61.Sauceau, M., Fages, J., Common, A., Nikitine, C., and Rodier, E., New challenges in polymer foaming: a review of extrusion processes assisted by supercritical carbon dioxide. Progress in Polymer Science, 2011. 36(6): p. 749-766.
    62.Zhang, J., Rizvi, G.M., Park, C.B., and Hasan, M.M., Study on cell nucleation behavior of HDPE-wood composites/supercritical CO2 solution based on rheological properties. Journal of Materials Science, 2011. 46(11): p. 3777-3784.
    63.Vo, C.V. and Paquet, A.N., An evaluation of the thermal conductivity of extruded polystyrene foam blown with HFC-134a or HCFC-142b. Journal of Cellular Plastics, 2004. 40(3): p. 205-228.
    64.Molina, M.J. and Rowland, F.S., Stratospheric sink for chlorofluoromethanes: chlorine atom-catalyzed destruction of ozone. Nature, 1974. 249(5460): p. 810-812.
    65.Okolieocha, C., Koppl, T., Kerling, S., Tolle, F.J., Fathi, A., Mulhaupt, R., and Altstadt, V., Influence of graphene on the cell morphology and mechanical properties of extruded polystyrene foam. Journal of Cellular Plastics, 2015. 51(4): p. 413-426.
    66.Tomasko, D.L., Burley, A., Feng, L., Yeh, S.-K., Miyazono, K., Nirmal-Kumar, S., Kusaka, I., and Koelling, K., Development of CO2 for polymer foam applications. Journal of Supercritical Fluids, 2009. 47(3): p. 493-499.
    67.Rauwendaal, C., Polymer Extrusion. 2014: Carl Hanser Verlag GmbH and Company KG: Munich, 2014.
    68.Sato, Y., Fujiwara, K., Takikawa, T., Sumarno, Takishima, S., and Masuoka, H., Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures. Fluid Phase Equilibria, 1999. 162(1-2): p. 261-276.
    69.Eckert, C.A., Knutson, B.L., and Debenedetti, P.G., Supercritical fluids as solvents for chemical and materials processing. Nature, 1996. 383(6598): p. 313-318.
    70.Han, X.M., Koelling, K.W., Tomasko, D.L., and Lee, L.J., Continuous microcellular polystyrene foam extrusion with supercritical CO2. Polymer Engineering and Science, 2002. 42(11): p. 2094-2106.
    71.吳舜英、徐敬一。塑膠發泡成形技術。高分子工業雜誌社出版: 台北,1997.
    72.陳劉旺、丁金超。高分子加工。高立圖書有限公司: 台北,2008.
    73.Rizvi, G.M., Pop-Iliev, R., and Park, C.B., A novel system design for continuous processing of plastic/wood-fiber composite foams with improved cell morphology. Journal of Cellular Plastics, 2002. 38(5): p. 367-383.
    74.Han, X.M., Koelling, K.W., Tomasko, D.L., and Lee, L.J., Effect of die temperature on the morphology of microcellular foams. Polymer Engineering and Science, 2003. 43(6): p. 1206-1220.
    75.Han, X.M., Zeng, C.C., Lee, L.J., Koelling, K.W., and Tomasko, D.L., Extrusion of polystyrene nanocomposite foams with supercritical CO2. Polymer Engineering and Science, 2003. 43(6): p. 1261-1275.
    76.Zeng, C.C., Han, X.M., Lee, L.J., Koelling, K.W., and Tomasko, D.L., Polymer-clay nanocomposite foams prepared using carbon dioxide. Advanced Materials, 2003. 15(20): p. 1743-1747.
    77.Park, C.B. and Suh, N.P., Filamentary extrusion of microcellular polymers using a rapid decompressive element. Polymer Engineering and Science, 1996. 36(1): p. 34-48.
    78.Park, C.B., Baldwin, D.F., and Suh, N.P., Effect of the pressure drip rate on cell nucleation in continuous processing of microcellular polymers. Polymer Engineering and Science, 1995. 35(5): p. 432-440.
    79.Guo, G., development of fine-celled bio-fiber composite foams using physical blowing agents and nano-particles, PHD thesis, University of Toronto, Canada, 2006.
    80.Leung, S.N., Park, C.B., Xu, D.L., Li, H.B., and Fenton, R.G., Computer simulation of bubble-growth phenomena in foaming. Industrial and Engineering Chemistry Research, 2006. 45(23): p. 7823-7831.
    81.Hossieny, N., Development of expanded thermoplastic polyurethane bead foams and their sintering mechanism, PHD thesis, University of Toronto, Canada, 2014.
    82.Naguib, H.E., Park, C.B., and Reichelt, N., Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. Journal of Applied Polymer Science, 2004. 91(4): p. 2661-2668.
    83.Bledzki, A.K., Faruk, O., and Huque, M., Physico-mechanical studies of wood fiber reinforced composites. Polymer-Plastics Technology and Engineering, 2002. 41(3): p. 435-451.
    84.Rizvi, G., Matuana, L.M., and Park, C.B., Foaming of PS/wood fiber composites using moisture as a blowing agent. Polymer Engineering and Science, 2000. 40(10): p. 2124-2132.
    85.Guo, G., Rizvi, G.M., Park, C.B., and Lin, W.S., Critical processing temperature in the manufacture of fine-celled plastic/wood-fiber composite foams. Journal of Applied Polymer Science, 2004. 91(1): p. 621-629.
    86.Zhang, H., Rizvi, G.M., and Park, C.B., Development of an extrusion system for producing fine-celled HDPE/wood-fiber composite foams using CO2 as a blowing agent. Advances in Polymer Technology, 2004. 23(4): p. 263-276.
    87.Lee, Y.H., Kuboki, T., Park, C.B., and Sain, M., The effects of nanoclay on the extrusion foaming of wood fiber/polyethylene nanocomposites. Polymer Engineering and Science, 2011. 51(5): p. 1014-1022.
    88.Lee, Y.H., Kuboki, T., Park, C.B., Sain, M., and Kontopoulou, M., The effects of clay dispersion on the mechanical, physical, and flame-retarding properties of wood fiber/polyethylene/clay nanocomposites. Journal of Applied Polymer Science, 2010. 118(1): p. 452-461.
    89.Ding, W., Kuboki, T., Wong, A., Park, C.B., and Sain, M., Rheology, thermal properties, and foaming behavior of high d-content polylactic acid/cellulose nanofiber composites. RSC Advances, 2015. 5(111): p. 91544-91557.
    90.Ding, W., Jahani, D., Chang, E., Alemdar, A., Park, C.B., and Sain, M., Development of PLA/cellulosic fiber composite foams using injection molding: crystallization and foaming behaviors. Composites Part A: Applied Science and Manufacturing, 2016. 83: p. 130-139.
    91.台化聚丙烯(PP)塑膠粒物性彙總表http://www.fcfc.com.tw/Plastic/tw/product/pp_char/K1023.htm.
    92.Flick, E.W., Plastics additives, volume 1: an industry guide. Elsevier Science: Cambridge, 2013.
    93.Weinhold, F., Thermodynamic description of simple fluids, in classical and geometrical theory of chemical and phase thermodynamics. 2008, John Wiley and Sons, Inc. p. 17-66.
    94.Kuboki, T., Foaming behavior of cellulose fiber-reinforced polypropylene composites in extrusion. Journal of Cellular Plastics, 2014. 50(2): p. 113-128.
    95.Zhai, W.T., Kuboki, T., Wang, L.L., Park, C.B., Lee, E.K., and Naguib, H.E., Cell structure evolution and the crystallization behavior of polypropylene/clay nanocomposites foams blown in continuous extrusion. Industrial and Engineering Chemistry Research, 2010. 49(20): p. 9834-9845.
    96.Zhai, W., Park, C.B., and Kontopoulou, M., Nanosilica addition dramatically improves the cell morphology and expansion ratio of polypropylene heterophasic copolymer foams blown in continuous extrusion. Industrial and Engineering Chemistry Research, 2011. 50(12): p. 7282-7289.

    QR CODE