簡易檢索 / 詳目顯示

研究生: 廖家成
Jia-Cheng Liao
論文名稱: 爐石基鹼激發漿體之鹼-氧化矽反應研究
Study on Alkali-Silica Reaction in Slag-based Alkali-Activated Paste
指導教授: 陳君弢
Chun-Tao Chen
口試委員: 張大鵬
Ta-Peng Chang
王韡蒨
Wei-Chien Wang
陳君弢
Chun-Tao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 173
中文關鍵詞: 鹼激發材料無機聚合物pyrex 玻璃稻殼灰鹼矽粒料 反應抗壓強度
外文關鍵詞: alkali-activated material, geopolymer, pyrex glass, rice husk ash, alkali-silica reaction, compressive strength
相關次數: 點閱:195下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鹼激發材料為一種水化鍊狀矽酸鹽架構材料,可用於替代水泥,擁有力學性能佳、耐久性佳、導熱性低、可固化廢棄物、耐化學侵蝕性質佳、能源消耗低及碳排放量低等優勢。由於製造過程中須使用鹼液,因此若使用活性粒料製作砂漿時,被認為容易產生鹼-矽粒料反應(ASR, alkali-silica reaction)。有鑑於此,本研究嘗試探討爐石基鹼激發漿體中鹼-矽粒料反應之影響因子,並期望能夠改善其ASR膨脹性。試驗過程中,以液固比0.6、0.4及氫氧化鈉與水玻璃體積比4:6、5:5、6:4製作爐石基鹼激發砂漿,最後再選定膨脹性較大之組別以稻殼灰取代部分水淬高爐石粉。試體養護環境為相對濕度75 %、溫度25°C,加速試驗環境則參考ASTM C1260之加速試驗法,但改以50°C之溫度進行加熱,後續放置於30°C之溶液中進行冷卻。結果發現,試體之抗壓強度隨著鹼激發劑混合比而改變。液固比0.4時,以6:4之組別抗壓強度最高,28天抗壓強度達79.7 MPa,5:5次之,4:6最低,僅達64.2 MPa。液固比0.6時,以6:4之組別抗壓強度最高,28天抗壓強度達68.7 MPa,5:5次之,4:6最低,僅達62.2 MPa。於ASR加速試驗中,亦為鹼激發混合劑比例6:4之組別為最佳。以液固比0.6、預先養護1天之試體為例,混合比例6:4下,加速試驗7天膨脹率僅0.29%,5:5次之,4:6最差,膨脹率達0.46%。後續以稻殼灰取代爐石粉後發現,隨著稻殼灰取代率增加,ASR所造成的膨脹也隨之降低。當稻殼灰取代率由0%增加至20%時,膨脹量可降低約91.6%。


The alkali-actived material (ACM) is a hydated chain-like silicate material and used as an alternative for the Portland cement. It has benefits of the high mechanical property and durability, the low thermal conductivity, the ability to solidify the waste, the resistance to the chemical corrosion, the reduced energy consumption, the low carbon release, and so on. However, since the alkali solution is required during the production, the alkali-silica reation (ASR) could possibly happen. In view of this issue, this study explored the factors influencing the ASR in the ground granulated furnace slag (GGBS)-based ACM and hopes to find ways in mitigating the expansion due to the ASR. During the study, the specimens were prepared using liquid to solids ratios (LS) of 0.4 and 0.6 and the volume ratios of the sodium hydroxide (Na(OH)) to the water glass of 4:6, 5:5 and 6:4. The mixture of the specimens with the largest expansion was chosen, and its slag was further partially replaced by rice husk ash (RHA). Specimens were cured at 25°C and 75% RH. The accelerated environment was in reference to ASTM C1260, but the curing temperature was reduced to 50°C. The specimens were cooled in the solution of 30°C. Results showed that the compressive strengths were changed by the mixing ratios of the alkali-activaotrs. At LS of 0.4, the specimens with the ratio of 6:4 had the highest 28-day strength of 79.7 MPa, followed by the one with 5:5 and the one with 4:6 having the least strength of 64.2 MPa. At LS of 0.6, the specimens with the ratio of 6:4 had the highest 28-day strength of 68.7 MPa, followed by the one with 5:5 and the one with 4:6 having the least strength of 62.2 MPa. In the accelerated ASR tests, the specimen with the ratio of 6:4 had the minimum expansion. For example, with the precuring time of 1 day and LS of 0.6, the specimen with the ratio of 6:4 had 7-day expansion of only 0.29%, followed by the one with 5:5 and the one with 4:6 having the largest expansion of 0.46%. The slag was then partially replaced by the RHA. It was found that the ASR expansion was reduced by the increased RHA. The expansion was reduced by around 91.6% when the replacement was increased from 0% to 20%.

摘要 I Abstract II 致謝 III 目錄 IV 表目錄 I 圖目錄 II 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究方法與流程 2 第二章 文獻回顧 5 2.1 水淬高爐石粉 5 2.1.1 物化性質 5 2.1.2 工程應用 6 2.2 稻殼灰 6 2.2.1 物化性質 7 2.2.2 添加稻殼灰對混凝土之影響 7 2.3 鹼激發材料 7 2.3.1 開發歷程 8 2.3.2 反應機理 9 2.3.3 物化性質 11 2.3.4 耐久性質 14 2.3.5 工程應用 14 2.4 鹼-氧化矽反應 15 2.4.1 反應機理 15 2.4.2 影響因子 16 2.4.3 測定法 17 2.4.4 鹼激發材料中的鹼-氧化矽反應 18 第三章 試驗規劃 29 3.1 試驗內容以及變數 29 3.1.1 變數說明 29 3.1.2 編碼說明 30 3.2 試驗材料與設備 31 3.2.1 試驗材料 31 3.2.2 試驗設備 33 3.3 配比設計 35 3.4 試驗項目 36 3.4.1 抗壓強度試驗 36 3.4.2 鹼矽粒料反應加速試驗 37 3.4.3 微觀分析 40 第四章 試驗結果與討論 59 4.1 前言 59 4.2 先期試驗 59 4.2.1 抗壓強度 59 4.2.2 ASR加速試驗長度變化率 60 4.2.3 ASR加速試驗法之參數 61 4.3 抗壓強度 61 4.3.1 鹼性激發劑混合比例影響 62 4.3.2 液固比之影響 64 4.3.3 稻殼灰取代之影響 67 4.4 長度變化量 68 4.4.1 粒料種類影響 68 4.4.2 鹼性激發劑混合比例影響 70 4.4.3 液固比之影響 72 4.4.4 養護齡期之影響 74 4.4.5 稻殼灰取代率之影響 76 4.5 比表面積 77 4.6 X光繞射分析 77 4.6.1 鹼性激發劑混合比例影響 77 4.6.2 液固比之影響 78 4.6.3 稻殼灰取代率之影響 80 4.6.4 養護齡期之影響 80 4.7 掃描式電子顯微鏡 82 4.7.1 ASR加速試驗之試體 82 4.8 壓汞法孔隙測量(MIP) 82 4.9 核磁共振光譜(NMR) 83 4.9.1 29Si MAS–NMR光譜分析結果 83 第五章 結論與建議 131 5.1 結論 131 5.1.1 ASR加速試驗之方法 131 5.1.2 抗壓強度 131 5.1.3 ASR膨脹性 132 參考文獻 135 附錄A XRD圖譜 141 附錄B SEM分析 145 附錄C 27Al MAS–NMR光譜分析結果 147

[1] Albitar, M., Mohamed Ali, M. S., Visintin, P. and Drechsler, M. (2017). "Durability evaluation of geopolymer and conventional concretes." Construction and Building Materials 136: 374-385.
[2] ASTM C882 (2010). Standard Test Method for Bond Strength of Epoxy-Resin Systems Used With Concrete By Slant Shear, ASTM International, West Conshohocken, PA.
[3] ASTM C150 (2022). Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA.
[4] ASTM C289-94 (2017). Standard Test Method for Potential Alkali-Silica Reactivity of Aggregates (Chemical Method), ASTM International, West Conshohocken, PA.
[5] ASTM C441 (2018). Standard Test Method for Effectiveness of Pozzolans or Ground Blast-Furnace Slag in Preventing Excessive Expansion of Concrete Due to the Alkali-Silica Reaction, ASTM International, West Conshohocken, PA.
[6] ASTM C227-10 (2018). Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method), ASTM International, West Conshohocken, PA.
[7] ASTM C305-14 (2020). Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency, ASTM International, West Conshohocken, PA.
[8] ASTM C109 (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International, West Conshohocken, PA.
[9] ASTM C1293 (2020). Standard Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction, ASTM International, West Conshohocken, PA.
[10] ASTM C490/C490M-21 (2021). Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete, ASTM International, West Conshohocken, PA.
[11] ASTM C39/C39M-21 (2021). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA.
[12] ASTM C1260-21 (2021). Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method), ASTM International, West Conshohocken, PA.
[13] ASTM C191-21 (2021). Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle, ASTM International, West Conshohocken, PA.
[14] Bakharev, T., Sanjayan, J. G. and Cheng, Y. B. (1999). "Effect of elevated temperature curing on properties of alkali-activated slag concrete." Cement and Concrete Research 29(10): 1619-1625.
[15] Bakharev, T., Sanjayan, J. G. and Cheng, Y. B. (2001). "Resistance of alkali-activated slag concrete to alkali–aggregate reaction." Cement and Concrete Research 31(2): 331-334.
[16] Barros, S. V. A., Marciano, J. E. A., Ferreira, H. C., Menezes, R. R. and Neves, G. d. A. (2016). "Addition of quartzite residues on mortars: Analysis of the alkali aggregate reaction and the mechanical behavior." Construction and Building Materials 118: 344-351.
[17] Brough, A. R., Holloway, M., Sykes, J. and Atkinson, A. (2000). "Sodium silicate-based alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid." Cement and Concrete Research 30(9): 1375-1379.
[18] CNS 12223 (2019). 水淬高爐爐碴, 中華民國國家標準, 經濟部標準檢驗局.
[19] CNS 12549 (2021). 混凝土及水泥砂漿用水淬高爐爐碴粉, 中華民國國家標準, 經濟部標準檢驗局.
[20] Cheng, T. W. and Chiu, J. P. (2003). "Fire-resistant geopolymer produced by granulated blast furnace slag." Minerals Engineering 16(3): 205-210.
[21] Das, S. K., Singh, S. K., Mishra, J. and Mustakim, S. M. (2020). "Effect of rice husk ash and silica fume as strength-enhancing materials on properties of modern concrete—a comprehensive review." Emerging Trends in Civil Engineering 61: 253-266.
[22] Davidovits, J. I. G. o. r. (2015). Geopolymer chemistry and applications.
[23] Deb, P., Nath, P. and Sarker, P. (2015). "Drying Shrinkage of Slag Blended Fly Ash Geopolymer Concrete Cured at Room Temperature." Procedia Engineering 125: 594-600.
[24] Elzeadani, M., Bompa, D. V. and Elghazouli, A. Y. (2022). "One part alkali activated materials: A state-of-the-art review." Journal of Building Engineering 57: 104871.
[25] Fanijo, E. O., Kolawole, J. and Almakrab, A. (2021). "Alkali-silica reaction (ASR) in concrete structures: Mechanisms, effects and evaluation test methods adopted in the United States." Case Studies in Construction Materials 15: e00563.
[26] Gebregziabiher, B. S., Thomas, R. J. and Peethamparan, S. (2016). "Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders." Construction and Building Materials 113: 783-793.
[27] Gillott, J. E. (1975). "Alkali-aggregate reactions in concrete." Engineering Geology 9(4): 303-326.
[28] Hadley, D. W. (1961). "Alkali reactivity of carbonate rocks - expansion and dedolomitization."Portland Cement Association, Research and Development Laboratories 40: 462-474.
[29] Huanhai, Z., Xuequan, W., Zhongzi, X. and Mingshu, T. (1993). "Kinetic study on hydration of alkali-activated slag." Cement and Concrete Research 23(6): 1253-1258.
[30] Hwang, C. L. and Chandra, S. (1996). The use of rice husk ash in concrete. Waste materials used in concrete manufacturing, Elsevier: 184-234.
[31] JIS A 6206 (2013). Ground granulated blast-furnace slag for concrete.
[32] Jena, S., Panigrahi, R. and Sahu, P. (2019). "Mechanical and Durability Properties of Fly Ash Geopolymer Concrete with Silica Fume." Journal of The Institution of Engineers (India): Series A 100(4): 697-705.
[33] Komnitsas, K., Zaharaki, D. and Perdikatsis, V. (2009). "Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers." Journal of Hazardous Materials 161(2): 760-768.
[34] Krivenko, P., Drochytka, R., Gelevera, A. and Kavalerova, E. (2014). "Mechanism of preventing the alkali–aggregate reaction in alkali activated cement concretes." Cement and Concrete Composites 45: 157–165.
[35] Kupwade-Patil, K. and Allouche Erez, N. (2013). "Impact of Alkali Silica Reaction on Fly Ash-Based Geopolymer Concrete." Journal of Materials in Civil Engineering 25(1): 131-139.
[36] Li, C., Sun, H. and Li, L. (2010). "A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements." Cement and Concrete Research 40(9): 1341-1349.
[37] Li, C., Zhang, N., Zhang, J., Song, S. and Zhang, Y. (2022). "C-A-S-H Gel and Pore Structure Characteristics of Alkali-Activated Red Mud–Iron Tailings Cementitious Mortar." Materials 15(1).
[38] Maragkos, I., Giannopoulou, I. and Panias, D. (2009). "Synthesis of Ferronickel Slag-Based Geopolymers." Minerals Engineering 22(2): 196-203.
[39] Marć, M. and Wieczorek, P. P. (2019). Chapter One - Introduction to MIP synthesis, characteristics and analytical application. Comprehensive Analytical Chemistry. M. Marć, Elsevier. 86: 1-15.
[40] McCoy, W. and Caldwell, A. (1951). New approach to inhibiting alkali-aggregate expansion. Journal Proceedings. 47(5): 693-706.
[41] Moayedi, H., Aghel, B., Abdullahi, M. a. M., Nguyen, H. and Rashid, A. S. A (2019). "Applications of rice husk ash as green and sustainable biomass." Journal of Cleaner Production 237: 117851.
[42] Mosaberpanah, M. A. and Umar, S. A. (2020). "Utilizing Rice Husk Ash as Supplement to Cementitious Materials on Performance of Ultra High Performance Concrete: – A review." Materials Today Sustainability 7-8: 100030.
[43] Nair, D. G., Fraaij, A., Klaassen, A. A. K. and Kentgens, A. P. M. (2008). "A structural investigation relating to the pozzolanic activity of rice husk ashes." Cement and Concrete Research 38(6): 861-869.
[44] Nodehi, M. and Taghvaee, V. M. (2021). "Alkali-activated materials and geopolymer: a review of common precursors and activators addressing circular economy." Circular Economy and Sustainability: 1-32.
[45] Nana, A., Epey, N., Rodrique, K. C., Deutou, J. G. N., Djobo, J. N. Y., Tomé, S., Alomayri, T. S., Ngouné, J., Kamseu, E. and Leonelli, C. (2021). "Mechanical strength and microstructure of metakaolin/volcanic ash-based geopolymer composites reinforced with reactive silica from rice husk ash (RHA)." Materialia 16: 101083.
[46] Oberholster, R. E. and Davies, G. (1986). "An accelerated method for testing the potential alkali reactivity of siliceous aggregates." Cement and Concrete Research 16(2): 181-189.
[47] Okada, K., Nishibayashi, S. and Kawamura, M. (1989). Alkali-aggregate reaction : 8th international conference. London; Elsevier Applied Science.
[48] Onojah, A. D., Agbendeh, N. A. and Mbakaan, C. (2013). "Rice husk ash refractory: the temperature dependent crystalline phase aspects." International Journal of Research 15(2): 246-248.
[49] Palomo, A., Grutzeck, M. W. and Blanco, M. T. (1999). "Alkali-activated fly ashes: A cement for the future." Cement and Concrete Research 29(8): 1323-1329.
[50] Provis, J. L., Palomo, A. and Shi, C. (2015). "Advances in understanding alkali-activated materials." Cement and Concrete Research 78: 110-125.
[51] Provis, J. L. and van Deventer, J. S. J. (2019). 16 - Geopolymers and Other Alkali-Activated Materials. Lea's Chemistry of Cement and Concrete (Fifth Edition). P. C. Hewlett and M. Liska, Butterworth-Heinemann: 779-805.
[52] Purdon, A. O. (1940). "The action of alkali on the blast furnace slag." The Society Of Chemical Industry 59(5): 191-202.
[53] Rajabipour, F., Giannini, E., Dunant, C., Ideker, J. H. and Thomas, M. D. A. (2015). "Alkali–silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps." Cement and Concrete Research 76: 130-146.
[54] Reddy, K. R., Harihanandh, M. and Murali, K. (2021). "Strength performance of high-grade concrete using rice husk ash (RHA) as cement replacement material." Materials Today: Proceedings 46(17): 8822-8825.
[55] Shayan, A., Diggins, R. G., Ivanusec, I. and Westgate, P. L. (1988). "Accelerated testing of some Australian and overseas aggregates for alkali-aggregate reactivity." Cement and Concrete Research 18(6): 843-851.
[56] Shi, C. and Day, R. L. (1995). "A calorimetric study of early hydration of alkali-slag cements." Cement and Concrete Research 25(6): 1333-1346.
[57] Shi, C. and Day, R. L. (1996). "Some factors affecting early hydration of alkali-slag cements." Cement and Concrete Research 26(3): 439-447.
[58] Stanton, T. E. (1940). "Influence of cement and aggregate on concrete expansion." 124: 171-173.
[59] Swanepoel, J. C. and Strydom, C. A. (2002). "Utilisation of fly ash in a geopolymeric material." Applied Geochemistry 17(8): 1143-1148.
[60] Sun, B., Ye, G. and de Schutter, G. (2022). "A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials." Construction and Building Materials 326: 126843.
[61] Tang, Z., Li, W., Hu, Y., Zhou, J. L. and Tam, V. W. Y. (2019). "Review on designs and properties of multifunctional alkali-activated materials (AAMs)." Construction and Building Materials 200: 474-489.
[62] Thomas, M. (2011). "The effect of supplementary cementing materials on alkali-silica reaction: A review." Cement and Concrete Research 41(12): 1224-1231.
[63] Townshen, A. (1983). "Principles of Instrumental Analysis: Douglas A. Skoog and Donald M. West, 2nd edn." Analytica Chimica Acta 152: 314.
[64] Van Deventer, J., Provis, J., Duxson, P. and Brice, D. (2010). "Chemical Research and Climate Change as Drivers in the Commercial Adoption of Alkali Activated Materials." Waste Biomass Valoriz. 1: 145-155.
[65] Van Jaarsveld, J. G. S., Van Deventer, J. S. J. and Lorenzen, L. (1997). "The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications." Minerals Engineering 10(7): 659-669.
[66] Walkley, B. and Provis, J. L. (2019). "Solid-state nuclear magnetic resonance spectroscopy of cements." Materials Today Advances 1: 100007.
[67] Xu, H. and Van Deventer, J. (2000). "The geopolymerisation of alumino-silicate minerals." International Journal of Mineral Processing 59(3): 247-266.
[68] Xu, H., Van Deventer, J. and Lukey, G. (2001). "Effect of Alkali Metals on the Preferential Geopolymerization of Stilbite/Kaolinite Mixtures." Industrial & Engineering Chemistry Research 40(17): 3749-3756.
[69] Zheng, G., Cui, X., Zhang, W. and Tong, Z. (2009). "Preparation of geopolymer precursors by sol–gel method and their characterization." Journal of Materials Science 44(15): 3991-3996.
[70] 中聯資源股份有限公司. (2019). "各種爐石成份比較表.", https://www.chc.com.tw/pe_p2.html
[71] 行政院公共工程委員會 (2001). "公共工程高爐石混凝土使用手冊."
[72] 姚廷穎 (2020). ‶不同養護環境下含低溫煆燒稻殼灰無機聚合物漿體之抗壓強度與體積穩定性研究.″ 碩士論文,營建工程所,國立台灣科技大學.
[73] 陳冠宇 (2010). ‶鹼激發爐石基膠體配比因子對其工程性質影響之研究.″ 碩士論文,營建工程所,國立台灣科技大學.
[74] 陳姵華 (2017). ‶含低溫鍛燒稻殼灰漿體之力學與耐久性質.″ 碩士論文,營建工程所,國立台灣科技大學.
[75] 陳棟鈞 (2021). ‶爐石基無機聚合物漿體之碳化行為研究.″ 碩士論文,營建工程所,國立台灣科技大學.
[76] 黃兆龍 (2007). 卜作嵐混凝土使用手冊. 財團法人中興工程顧問公司: 台北市.
[77] 楊韙誠 (2013). ‶鹼矽粒料反應下水泥砂漿的碳化與氯離子擴散行為研究.″ 碩士論文,營建工程所,國立台灣科技大學.
[78] 鄭大偉 (2020). "無機聚合材料(Geopolymer)與鹼激發材料(AAM)有何不同?." 中國土木水利工程學會會刊,第四十七卷,第二期,10-12頁.

無法下載圖示 全文公開日期 2027/09/28 (校內網路)
全文公開日期 2027/09/28 (校外網路)
全文公開日期 2027/09/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE