簡易檢索 / 詳目顯示

研究生: 蔡宜昌
Yi-Chang Tsai
論文名稱: 氣壓伺服系統之適應性控制器設計
Adaptive Controller Design for Pneumatic Servo Systems
指導教授: 黃安橋
An-Chyau Huang
口試委員: 黃緒哲
none
周瑞仁
none
薛文証
none
黃衍任
none
蕭俊祥
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 115
中文關鍵詞: 氣壓伺服適應性控制多層滑動控制未匹配不確定項函數近似技術
外文關鍵詞: pneumatic servo, adaptive control, multiple-surface sliding control, mismatched uncertainties, FAT
相關次數: 點閱:290下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    氣壓致動系統具有簡單、乾淨、便宜、容易裝備與維護、一般性操作安全、高能量密度等優點,因此廣泛地運用於工業界之程序機械作業。但由於傳動媒體的可壓縮性、閥流之非線性特性與系統不連續時變摩擦效應等高度非線性特性,致使氣壓致動器較少見用於工業伺服作動。為解決此一問題,除了硬體系統與元件之研發與改良外,較複雜之非線性控制器設計如強健控制、適應控制、與智慧型控制等策略之運用,也促使氣壓伺服控制技術得以有所進展。
    在時變負載氣壓伺服系統模型之建構上,可發現系統數學模型包含了未匹配不確定項。既然與控制訊號不在同一途徑或範圍空間,其不確定項之動態行為或許將造成閉迴路系統之不穩定。為解決此一問題,本文審慎地找尋系統各參數之邊界,在忽略部分參數影響下,採用多層滑動控制策略控管這些未匹配不確定項,而達到精密致動之目的。
    當考慮邊界未知與未建模之系統參數時,可發現系統模型之時變特性使得傳統適應性控制之設計並不適用。為克服估測這些不確定參數可能造成之奇異解問題,本文首先提出一非奇異解調整器之設計,而以函數近似技術為基礎之適應性多層滑動控制器使系統在參數皆為未知之狀況下達到精密致動之效果。
    為突破氣壓伺服系統對壓力量測的依賴性,傳統解決方法是採用觀察器,但其結果除了系統階數增加外,還會產生不必要的奇異點。因此本文另闢蹊徑,針對氣壓伺服系統的動態方程式進行重新安排,經由適當地參數轉換使得壓力感測器之訊號回饋得以被省略。此新建模之系統,可藉由適應性多層滑動控制器之設計以確保系統的穩定性,而所提設計的效能則可藉由實驗來加以印證。


    Abstract
    Pneumatic actuators have widely been used in manufacturing and process industries due to their various advantages such as clean in nature, cheap, simple and easily maintained, generally safe in operation, and good power density. But for their inherent highly nonlinear properties such as compressibility of medium, friction effect and nonlinearity of valves, pneumatic actuators are seldom used in industrial servo applications. To cope with the problems, some advanced pneumatic servo mechanisms and elements are developed and investigated. In addition, the major impetus to the development of pneumatic servo control technology arrived with emergence of complex nonlinear controllers design such as robust, adaptive, and intelligent approaches though the possible low cost computing.
    The mathematical model of a pneumatic servo system with time-varying payload is typically characterized by a high-order non-autonomous dynamics with mismatched uncertainties. Since these uncertainties are not in the range space of the control effort, they may enter into the system dynamics to destabilize the close loop system. To deal with the problems, this dissertation proposes a multiple-surface sliding controller (MSSC) design though identifying explicit parameters restrictions to take care of the mismatched uncertainties. With the robust control, an accurate positioning is achieved.
    In order to cope with the possible singular problem coming from the time-varying uncertainties estimating, we proposed a tunable regulator design to have a better improvement. Under the nonsingular estimation, this dissertation proposed a function approximation technology (FAT) based adaptive MSSC design to stabilize the accurate positioning pneumatic servo system with bound unknown uncertainties.
    To reduce the demand for precise modeling of the pneumatic servo system, some researchers used state observers instead of expensive pressure sensors. However, increasing of the system order and possible singular points further complicated the design and implementation. In this dissertation, a transformation is suggested to reformulate the dynamic equation such that the pressure sensor feedbacks can be neglected. A FAT based adaptive MSSC is designed to stabilize the system. Experiments are conducted to demonstrate the effectiveness of the proposed designs.

    目錄 摘要 I Abstract II 誌謝 IV 目錄 V 符號說明 VII 圖片索引 XVII 表格索引 XX 第一章 緒論 1 1.1 簡介 1 1.2 研究動機與規劃 7 1.3 本文大綱 10 第二章 氣壓伺服系統模型 11 2.1 閥流之數學模型 11 2.2 氣壓缸的熱力平衡 15 2.3 可變負載的動力方程式 18 2.4 含未匹配不確定項氣壓伺服系統之數學模型 18 第三章 函數近似估測器設計之理論基礎 21 3.1 函數近似技術 21 3.2 時變適應系統奇異解問題的解決 23 3.2.1 非奇異解調整器 23 3.2.2 適應法則之選擇與穩定性證明 24 3.2.3 模擬結果 29 3.2.4 小結 30 第四章 氣壓伺服系統之實驗配置 40 4.1 比例方向閥 40 4.2 氣壓缸與時變負載 41 4.3 壓源設備 43 4.3.1 空氣壓縮機與儲氣筒 44 4.3.2 冷凍乾燥機與過濾設備 45 4.4 電腦控制器、感測器與界面 47 4.4.1 感測器 48 4.4.2 電腦控制系統 51 4.5 小結 52 第五章 氣壓伺服系統之強健控制器設計 54 5.1 控制器設計與穩定性分析 54 5.2 實驗結果 57 5.3 小結 59 第六章 氣壓伺服系統之適應性控制器設計 64 6.1 控制器設計與穩定性分析 64 6.2 實驗結果 68 6.3 小結 69 第七章 無壓力感測回饋氣壓伺服系統之控制器設計 75 7.1 系統新模型 75 7.2 控制器設計與穩定性分析 76 7.3 實驗結果 82 7.4 小結 83 第八章 結論 88 參考文獻 89 作者簡介 95

    參考文獻

    [1] P. Moore, and J. S. Pu, “Pneumatic servo actuator technology,” IEE Colloquium on Actuaor Technology: Current Practice and New Developments, pp. 3/1-3/6, 1996.
    [2] N. W. Biege, L. C. Bartholomew, L. J. DiBuo, “New techniques to improve and modify existing pneumatic conveying systems in cement plants,” 40th Conference Record of IEEE/PCA Cement Industry Conference, pp. 177-187, 1998.
    [3] P. D. Henri, J. M. Hollerbach, and A. Nahvi, “An analytical and experimental investigation of a jet pipe controlled electropneumatic actuator,” IEEE Transactions on Robotics and Automation, Vol. 14, No. 4, pp. 601-611, 1998.
    [4] T. Shen, K. Tamura, H. Kaminaga, N. Henmi, and T. Nakazawa,” Robust nonlinear control of parametric uncertain system with unknown friction and its application to a pneumatic control valve,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 122, pp. 257-262, 2000.
    [5] M. Sorli, G. Figliolini, and S. Pastorelli, “Dynamic model and experimental investigation of a pneumatic proportional pressure valve,” IEEE/ASME Transactions on Mechatronics, Vol. 9, No. 1, pp. 78-86, 2004.
    [6] T. Miyajima, K. Sakaki, T. Shibukawa, T. Fujita, K. Kawashima, and T. kagawa, “Development of pneumatic high precise position controllable servo valve,” Proceedings of the 2004 IEEE International Conference on Control Applications, pp. 1159-164, 2004.
    [7] J. Pu, R. H. Weston, and P. R. Moore, “Digital motion control and profile planning for pneumatic servos,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 114, pp. 634-640, 1992.
    [8] X. Lin, F. Spettel, and S. Scavarda, “Modeling and test of an electropneumatic servovalve controlled long rodless actuator,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 118, pp. 457-462, 1996.
    [9] S. Drakunov, G. D. Hanchin, W. C. Su, and Ü. Özgüner, “Nonlinear control of a rodless pneumatic servoactuator, or sliding modes versus Coulomb friction,” Automatica, Vol. 33, No. 7, pp. 1401-1408, 1997.
    [10] J. Gyeviki, A. Csiszar, and K. Rozsahegyi, “Sliding Modes Application in pneumatic positioning,” Proceedings of the 2005 IEEE International Conference on Mechatronics, pp. 964-969, 2005.
    [11] T. Hesselroth, K. Sarkar, P. P. van der Smagt, and K. Schulten, “Neural network control of a pneumatic robot arm,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 24, No. 1,pp. 28-38, 1994.
    [12] D. G. Caldwell, G. A. Medrano-Cerda, and M. Goodwin, “Control of pneumatic muscle actuators,” IEEE Control Systems Magazine, Vol. 15, pp. 40-48, 1995.
    [13] J. H. Lilly, P. M. Quesada, “A two-input sliding-mode controller for a planar arm actuated by four pneumatic muscle groups,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 12, No. 3, pp. 349-359, 2004.
    [14] X. Zhu, G. Tao, B. Yao, and J. Cao, “Adaptive robust posture control of parallel manipulator driven by pneumatic muscles with redundancy,” IEEE/ASME Transactions on Mechatronics, Vol. 13, pp. 441-450, 2008.
    [15] J. Wang, J. D. Wang, N. Daw, and Q. H. Wu, “Identification of pneumatic cylinder friction parameters using genetic algorithms,” IEEE/ASME Transactions on Mechatronics, Vol. 9, No. 1, pp. 100-107, 2004.
    [16] H. X. Zhang, J. W. Zhang, and G. G. Zong, “Realization of a service climbing robot for glass-wall cleaning,” Proceedings of IEEE International Conference on Robotics and Biomimetics, pp. 395-400, 2004.
    [17] S. De Francisci, D. Longo, and G. Muscato, “A direction dependent parametric model for the vacuum adhesion system of the Alicia II robot,” MED ’06. 14th Mediterranean Conference on Control and Automation, pp. 1-6, 2006.
    [18] S. Liu, and J. E. Bobrow, ‘An analysis of a pneumatic servo system and its application to a computer-controlled robot,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 110, pp. 228-235, 1988.
    [19] J. Y. Lai, C. H. Menq, and R. Singh, “Accurate position control of a pneumatic actuator,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol.112, pp. 734-739, 1990.
    [20] J. E. Bobrow and B. W. McDonell, Modeling, identification, and control of a pneumatically actuated, force controllable robot, IEEE Transactions on Robotics and Automation, Vol. 14, No. 5, pp. 732-742, 1998.
    [21] E. Richer, and Y. Hurmuzlu, “A high performance pneumatic force actuator system: Part I – Nonlinear mathematical model,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 122, pp. 416-425, 2000.
    [22] J. Wang, D. J. D. Wang, P. R. Moore, and J. Pu, “Modelling study, analysis and robust servocontrol of pneumatic cylinder actuator systems,” IEE Proceedings Control Theory and Applications, Vol. 148, pp. 35-42, 2001.
    [23] J. M. Tressler, T. Clement, H. Kazerooni, and M. Lim, “Dynamic behavior of pneumatic systems for lower extremity extenders,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 3248-3253, 2002.
    [24] Y. C. Tsai, and A. C. Huang, “Multiple-surface sliding controller design for pneumatic servo systems,” Mechatronics, Vol. 18, pp. 506-512, 2008.
    [25] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, “Nonlinear and Adaptive Control Design,” John Wiley and Sons; 1995.
    [26] A. C. Huang, Y. C. Chen, “Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties,” IEEE Transactions on Control Systems Technology, Vol. 12, No. 5, pp. 770-775, 2004.
    [27] A. C. Huang, Y. C. Chen, “Adaptive multiple-surface sliding control for non-autonomous systems with mismatched uncertainties,” Automatica, Vol. 40, No. 11, pp.1939-1945, 2004.
    [28] S. R. Pandian, Y. Hayakawa, Y. Kanazawa, Y. Kamoyama and S. Kawamura, “Practical Design of a Sliding Mode Controller for Pneumatic Actuators,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol.119, pp.666-674, Dec. 1997.
    [29] E. Richer, and Y. Hurmuzlu, “A high performance pneumatic force actuator system: Part II – Nonlinear controller design,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 122, pp. 426-434, 2000.
    [30] T. Acarman, and C. Hatipoğlu, “A robust nonlinear controller design for a pneumatic actuator,” Proceedings of American Control Conference, pp.4490-4495, Jun. 2001.
    [31] E. J. Barth, J. Zhang and M. Goldfarb, “Sliding Mode Approach to PWM-Controlled Pneumatic Systems”, Proceedings of the American Control Conference, pp.2362-2367, May 2002.
    [32] X. Shen, J. Zhang , E. J. Barth, and M. Goldfarb, “Nonlinear Averaging Applied to the Control of Pulse Width Modulated (PWM) Pneumatic Systems”, Proceedings of the American Control Conference, pp.4444-4448, 2004.
    [33] H. Kazerooni, “Design and Analysis of Pneumatic Force Generators for Mobile Robotic System,” IEEE/ASME Trans. on Mechatronics, Vol. 10, No. 4, pp.411-418, 2005.
    [34] A. K. Paul, J. K. Mishra, and M.G. Radke, “Reduce order sliding mode control for pneumatic actuator,” IEEE Transactions on Control Systems Technology, Vol. 2, No. 3, pp. 271-276, 1994.
    [35] J. Tang, and G. Walker, “Variable structure control of a pneumatic actuator,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 117, pp. 88-92, 1995.
    [36] B. W. Surgenor, and N. D. Vaughan, “Continuous sliding mode control of a pneumatic actuator,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 119, pp. 578-581, 1997.
    [37] K. S. Narendra, and A. M. Annaswamy, “Stable Adaptive Systems,” Prentice Hall, Englewood Cliffs, NJ, 1989.
    [38] J. E. Bobrow and F. Jabbari, “Adaptive pneumatic force actuation and position control,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 113, pp. 267-272, 1991.
    [39] B. W. McDonell, and J. E. Bobrow, “Adaptive tracking control of an air powered robot actuator,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 115, pp. 427-433, 1993.
    [40] R. Richardson, A. R. Plummer, M. D. Brown, “Self-tuning control of a pneumatic actuator under the influence of gravity,” IEEE Transactions on Control Systems Technology, Vol. 9, No. 2, pp. 330-334, 2001.
    [41] K. Tanaka, M. Sakamoto, T. Sakou, Y. Yamada, A. Shimizu, Y. Arimitsu, and S. Uchikado, “Improved design scheme of MRAC for electro-pneumatic servo system with additive external forces,” Proceedings of IEEE Conference on Emerging Technologies and Factory Automation, Vol.2, pp.763-769, 1996.
    [42] K. Tanaka, M. Kurigami, G. Zhao, M. Sakamoto and A. Shimizu, “Multi-rate MRAC using delta-operator for electro-pneumatic servo system,” Proceedings of 35th IEEE Conference on Decision and Control, Vol. 1, pp.39-44, 1996.
    [43] K. Tanaka, Y. Yamada, M. Sakamoto and S. Uchikado, “Model reference adaptive control with neural network for electro-pneumatic servo system,” Proceedings of IEEE International Conference on Control Applications, pp.1130-1134, 1998.
    [44] K. Tanaka, Y. Yamada, T. Satoh, A. Uchibori and S. Uchikado, “Model reference adaptive control with multi-rate type neural network for electro-pneumatic servo system,” Proceedings of IEEE International Conference on Control Applications, pp.1716-1721, 1999.
    [45] D. C. Gross, and K. S. Rattan, “Pneumatic cylinder trajectory tracking control using a feedforward multilayer neural network,” Proceedings of IEEE Aerospace and Electronics Conference, pp.777-784, Jul. 1997.
    [46] D. C. Gross, and K. S. Rattan, “A feedforward MNN controller for pneumatic cylinder trajectory tracking control,” Proceedings of IEEE International Conference on Neural Networks, pp.794-799, Jun. 1997.
    [47] D. C. Gross, and K. S. Rattan, “An adaptive multilayer neural network for trajectory tracking control of a pneumatic cylinder,” Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Vol. 2, pp.1662-1667, Oct. 1998.
    [48] G. S. Choi, and H. K. Lee, “A study on tracking position control of pneumatic actuators,” Proceedings of 24th Annual Conference of the IEEE Industrial Electronics Society, Vol. 3, pp.1749-1753, 1998.
    [49] J. Song, X. Bao, and Y. Ishida, “An application of MNN trained by MEKA for the position control of pneumatic cylinder,” Proceedings of IEEE International Conference on Neural Networks, pp.829-833, Jun. 1997.
    [50] Z. Situm, D. Pavkovic, and B. Novakovic, “Servo pneumatic position control using fuzzy PID gain scheduling,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 126, pp. 376-387, 2004.
    [51] Y. T. Liu, and T. Higuchi, “Precision positioning device utilizing impact force of combined piezo-pneumatic actuator,” IEEE/ASME Trans. on Mechatronics, Vol. 6, No. 4, 2001.
    [52] K. A. Al-Dakkan, M. Goldfarb, E. J. Barth, “Engergy saving control for pneumatic servo systems,” Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp.284-289, 2003.
    [53] R. B. van Varseveld, and G. M. Bone, “Accurate position control of a pneumatic actuator using on/off solenoid valves,” IEEE/ASME Trans. on Mechatronics, Vol. 2, No. 3, pp. 195-204, 1997.
    [54] C. Kunt, and R. Singh, “A linear time varying model for on-off valve controlled pneumatic actuators,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 112, pp. 740-747, 1990.
    [55] E. J. Barth, J. Zhang, and M. Goldfarb, “Sliding mode approach to PWM-controlled pneumatic system,” Proceedings of the American Control Conference, pp. 2362-2367, May 2002.
    [56] P. C. Chen, and A. C. Huang, “Adaptive multiple-surface sliding control of hydraulic active suspension systems based on function approximation technique,” Journal of Vibration and Control, Vol. 11, pp. 685-706, 2005.
    [57] J. H. Green, and J. K. Hedrick, “Nonlinear speed control for automotive engines,” Proceedings of American Control Conference, pp. 2891-2897, 1990.
    [58] J. J. E. Slotine, W. Li, “Applied Nonlinear Control,” New Jersey: Prentice-Hall; 1991.
    [59] A. C. Huang and Y. S. Kuo, “Sliding control of nonlinear systems containing time-varying uncertainties with unknown bounds,” International Journal of Control, Vol. 74, pp. 252-264, 2001.
    [60] M. C. Chien, and A. C. Huang, “Adaptive impedance control of robot manipulators based on function approximation technique,” Robotica, Vol. 22, pp. 395-403, 2004.
    [61] P. C. Chen, and A. C. Huang, “Adaptive sliding control of active suspension systems based on function approximation technique,” Journal of Sound and Vibration, Vol. 282, pp. 1119-1135, 2005.
    [62] P. C. Chen, and A. C. Huang, “Adaptive sliding control of active suspension systems with uncertain hydraulic actuator dynamics,” Vehicle System Dynamics, Vol. 44, pp.357-368, 2006.
    [63] A. C. Huang, S. C. Wu, and W. F. Ting, “An FAT-based adaptive controller for robot manipulators without regressor matrix: theory and experiments,” Robotica, Vol. 24, pp. 205-210, 2006.
    [64] A. C. Huang, and K. K. Liao, “FAT-based adaptive sliding control for flexible arms, theory and experiments, Journal of Sound and Vibration, Vol. 298, pp. 194-205, 2006.
    [65] P. A. Ioannou, “Robust adaptive control,” Prentice Hall, 1996.
    [66] S. S. Ge, C. C. Hang, T. H. Lee, and T. Zhang, “Stable adaptive neural network control,” Kluwer Academic Publishers, 2002.
    [67] Y. C. Tsai, and A. C. Huang, “FAT-based adaptive control for pneumatic servo systems with mismatched uncertainties,” Mechanical Systems and Signal Processing, Vol. 22, pp. 1263-1273, 2008.
    [68] J. Wu, M. Goldfarb, and E. J. Barth, “The role of pressure sensors in the servo control of pneumatic actuators,” Proceedings of American Control Conference, pp. 1710-1714, Jun. 2003.
    [69] P. Bigras, and K. Khayati, “Nonlinear observer for pneumatic system with non negligible connection port restriction,” Proceedings of American Control Conference, pp. 3191-3195, May 2003.
    [70] N. Gulati and E. J. Barth, “Pressure Observer Based Servo Control of Pneumatic Actuators,” Proceedings of the 2005 IEEE/ASME International Conference on Advanced intelligent Machatronics, pp.498-503, Jul. 2005.
    [71] R. H. F. Pao, “Fluid Dynamics,” Columbus, Ohio: Charles E. Merril Books, Inc., 1973.
    [72] W. Z. Black, and J. G.. Hartley, “Thermodynamics,” New York: Harper & Row; 1985.

    QR CODE