簡易檢索 / 詳目顯示

研究生: 柳惠心
Hui-Xin Liu
論文名稱: 雙摻雜奈米碗錨定單原子應用於陰離子交換膜燃料電池
Dual-Doped Nanobowls Anchoring Single Atoms for Anion Exchange Membrane Fuel Cells
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 王丞浩
楊錫杭
郭俞麟
曾怡享
黃信智
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 69
中文關鍵詞: 陰離子交換膜燃料電池氮硫共摻雜碳鐵單原子氧還原反應電催化觸媒
外文關鍵詞: anion exchange membrane fuel cell, nitrogen-sulfur co-doped carbon, iron single-atom catalyst, oxygen reduction reaction, electrocatalyst
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

人們對能源的需求逐年攀升,這造成二氧化碳排放量急遽增加。因此,發展可更加持續的能源以減少二氧化碳排放變得非常重要。燃料電池作為環保可再生能源,成為科學界廣泛關注的焦點,但其主要挑戰在於氧氣還原反應(ORR)速率緩慢,通常需要使用鉑基觸媒以加速反應進行,這也造成成本大幅增加,因此,本實驗致力於開發非貴金屬觸媒為主要目標。
在本研究中,合成了具有大比表面積的多孔奈米碗觸媒,此碳基材料不僅可錨定大量鐵單原子,亦在氮硫共摻雜下形成大量活性位點。由掃描式電子顯微鏡(SEM)影像可證實合成特殊形貌。在X射線光電子(XPS)圖譜證明了吡啶氮、石墨氮、噻吩硫及氧化硫等活性物質的存在。鐵單原子的特性可通過X光繞射分析儀(XRD)、X光吸收光譜(XAS)及穿透式電子顯微鏡(TEM)影像得以證明。在半電池測試中,Fe SAC-3%擁有出色的表現,起始電位(Eonset)為0.96 V、半波電位(E1/2)為0.85 V、極限電流密度(Jlimiting)為5.38mA/cm2,且經30,000圈穩定性測試時僅衰減25 mV。在全電池測試中,最大功率密度達到292.3 mW/cm²,所有表現皆超越了商用的Pt/C。


The escalating global energy demand has led to a rapid increase in CO2 emissions, underscoring the critical need for developing more sustainable energy sources. Fuel cells, as environmentally friendly and renewable energy options, have garnered significant attention in the scientific community. However, their primary challenge lies in the sluggish oxygen reduction reaction (ORR), often necessitating the use of platinum-based catalysts to accelerate the reaction, thereby significantly increasing costs.
In this research, we synthesized a porous nanobowls catalyst with a large surface area, capable of anchoring a substantial amount of iron single atoms and forming numerous active sites through nitrogen and sulfur co-doping. The unique morphology of the catalyst was confirmed by scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) spectra demonstrated the presence of active species such as pyridinic nitrogen, graphitic nitrogen, and sulfur. The characteristics of iron single atoms were confirmed through X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and transmission electron microscopy (TEM) imaging. In both half-cell and full-cell tests, Fe SAC-3% exhibited outstanding performance with onset potential (Eonset), half-wave potential (E1/2), limiting current density (Jlimiting), stability testing, and maximum power density reaching 292.3 mW/cm², surpassing all benchmarks of commercial Pt/C.

中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究背景 1 1.2 綠色能源之燃料電池介紹 2 1.2.1 燃料電池的種類 4 1.2.2 陰離子交換膜燃料電池(AEMFC)介紹 7 1.2.3 陰離子交換膜燃料電池結構介紹 8 1.2.4 燃料電池的極化現象 10 第二章 電化學原理與文獻探討 12 2.1 電化學原理 12 2.1.1 氧化還原反應 12 2.1.2 氧氣還原途徑 12 2.1.3 氧氣還原反應機制 14 2.1.4 氧氣還原反應之電化學催化 15 2.2 文獻探討 17 2.2.1 異質原子摻雜碳之非貴金屬觸媒 17 2.2.2沸石咪唑酯骨架材料(ZIF)衍生之非貴金屬觸媒 19 2.2.3金屬單原子(SACs)觸媒 21 2.2.4 模板法製備中空奈米結構 23 2.3 研究動機 24 第三章 實驗步驟與研究方法 25 3.1 實驗規劃 25 3.2 實驗材料及藥品 26 3.3 實驗流程 27 3.4 實驗儀器與設備 28 3.5 實驗步驟 29 3.5.1 陰極觸媒製備 29 3.5.2 半電池觸媒工作電極製備 30 3.6 儀器分析原理 31 3.6.1 X光繞射分析儀 (X-ray diffraction Spectrometer, XRD) 31 3.6.2 拉曼光譜分析儀 (Raman spectroscopy) 33 3.6.3 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FSEM) 34 3.6.4 X射線光電子能譜 (X-ray Photoelectron Spectroscopy, XPS) 35 3.6.5 X光吸收光譜 (X-ray Absorption Spectroscopy, XAS) 36 3.6.6 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 40 3.6.7 比表面積及孔徑分析儀 (Surface Area & Mesopore Analyzer) 41 3.6.8 電化學分析儀 44 3.6.9 燃料電池分析儀 46 第四章 結果與討論 47 4.1 奈米碳碗 48 4.1.1 不同鐵含量觸媒之形貌分析 48 4.1.2 不同鐵含量觸媒之X光繞射分析 50 4.1.3 不同鐵含量觸媒之拉曼光譜分析 51 4.1.4 不同鐵含量觸媒之穿透式電子顯微鏡分析 52 4.1.5 不同鐵含量觸媒之X射線光電子能譜分析 53 4.1.6 不同鐵含量觸媒之X光吸收光譜分析 57 4.1.7 不同鐵含量觸媒之氮氣等溫吸附-脫附曲線圖 59 4.2 電化學測試 60 4.2.1 不同鐵含量觸媒之氧氣還原反應活性比較 60 4.2.2 Fe SAC-3%觸媒之穩定性測試 62 4.3 全電池測試 63 4.3.1 Fe SAC-3%觸媒之全電池測試 63 第五章 結論 65 第六章 參考文獻 66

[1] 葉詠綺, (2024).
[2] S. Sabihuddin, A.E. Kiprakis, M. Mueller, Energies, 8 (2014) 172-216.
[3] P. Friedlingstein, (2023).
[4] 衣寶廉, 燃料電池─原理與應用, 五南圖書出版股份有限公司, (2005).
[5] N. Ramaswamy, S. Mukerjee, Advances in Physical Chemistry, 2012 (2012) 491604.
[6] Z. Pan, L. An, T. Zhao, Z. Tang, Progress in Energy and Combustion Science, 66 (2018) 141-175.
[7] L. Carrette, K. Friedrich, U. Stimming, Fuel cells, 1 (2001).
[8] N.A. Anastasijević, V. Vesović, R.R. Adžić, Theory. Journal of electroanalytical chemistry and interfacial electrochemistry, 229 (1987) 305-316.
[9] K. Kinoshita, Electrochemical Oxygen Technology, New York: Jhon Wiley & Sons, (1992).
[10] J. Zhang, Z. Wang, Z. Zhu, Journal of Power Sources, 255 (2014) 65-69.
[11] L. Genies, R. Faure, R. Durand, Electrochimica Acta, 44 (1998) 1317-1327.
[12] J.P. Hoare, Journal of the Electrochemical Society, 131 (1984) 1808.
[13] N. Marković, P. Ross Jr, Surface Science Reports, 45 (2002) 117-229.
[14] B.E. Conway, Comprehensive Treatise of Electrochemistry, New York: Kluwer Acadwmic Pub, (1983).
[15] 肖鋼、管衍德、廖福源、陳本源, 燃料電池技術, 全華圖書股份有限公司, (2010).
[16] R. Othman, A.L. Dicks, Z. Zhu, International journal of hydrogen energy, 37 (2012) 357-372.
[17] J. Zagal, P. Bindra, E. Yeager, Journal of The Electrochemical Society, 127 (1980) 1506.
[18] S. Gupta, D. Tryk, I. Bae, W. Aldred, E. Yeager, Journal of applied electrochemistry, 19 (1989) 19-27.
[19] H. Han, X. Wang, X. Zhang, Journal of Colloid and Interface Science, 615 (2022) 617-626.
[20] H. Wang, R. Cote, G. Faubert, D. Guay, J. Dodelet, The Journal of Physical Chemistry B, 103 (1999) 2042-2049.
[21] H. Meng, N. Larouche, M. Lefèvre, F. Jaouen, B. Stansfield, J.-P. Dodelet, Electrochimica Acta, 55 (2010) 6450-6461.
[22] Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X.a. Chen, S. Huang, ACS nano, 6 (2012) 205-211.
[23] J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Angewandte Chemie International Edition, 46 (2012) 11496-11500.
[24] T. Asefa, Accounts of chemical research, 49 (2016) 1873-1883.
[25] Z. Ma, S. Dou, A. Shen, L. Tao, L. Dai, S. Wang, Angewandte Chemie, 127 (2015) 1908-1912.
[26] T. Zhang, H. Wang, J. Zhang, J. Ma, Z. Wang, J. Liu, X. Gong, Chemical Engineering Journal, 444 (2022) 136560.
[27] D.-H. Kwak, S.-B. Han, Y.-W. Lee, H.-S. Park, I.-A. Choi, K.-B. Ma, M.-C. Kim, S.-J. Kim, D.-H. Kim, J.-I. Sohn, Applied Catalysis B: Environmental, 203 (2017) 889-898.
[28] J. Zhang, Z. Deng, S. Bai, C. Liu, M. Zhang, C. Peng, X. Xu, J. Jia, T. Luan, Fe, N, Journal of Colloid and Interface Science, 658 (2024) 373-382.
[29] C. Yong, Y. Xu, H. Yu, P. Wu, J. Wang, L.-L. Shen, G.-R. Zhang, D. Mei, Journal of Catalysis, 428 (2023) 115148.
[30] J.P. Masnica, S. Sibt-e-Hassan, S. Potgieter-Vermaak, Y.N. Regmi, L.A. King, L. Tosheva, Green Carbon, 1 (2023) 160-169.
[31] H. Rong, T. Zhan, Y. Sun, Y. Wen, X. Liu, H. Teng, Electrochimica Acta, 318 (2019) 783-793.
[32] H. Gao, Y. Wang, W. Li, S. Zhou, S. Song, X. Tian, Y. Yuan, Y. Zhou, J. Zang, International Journal of Hydrogen Energy, 46 (2021) 36742-36752.
[33] Y. Sun, H. Li, S. Guo, C. Li, Chinese Chemical Letters, (2023) 109418.
[34] Y. Li, X. Liu, L. Zheng, J. Shang, X. Wan, R. Hu, X. Guo, S. Hong, J. Shui, Journal of Materials Chemistry A, 7 (2019) 26147-26153.
[35] J. Zhang, Y. Zhao, C. Chen, Y.-C. Huang, C.-L. Dong, C.-J. Chen, R.-S. Liu, C. Wang, K. Yan, Y. Li, Journal of the American Chemical Society, 141 (2019) 20118-20126.
[36] D. Zhang, W. Chen, Z. Li, Y. Chen, L. Zheng, Y. Gong, Q. Li, R. Shen, Y. Han, W.-C. Cheong, Chemical Communications, 54 (2018) 4274-4277.
[37] Z. Zhang, X. Gao, M. Dou, J. Ji, F. Wang, Small, 13 (2017) 1604290.
[38] X. Fu, P. Zamani, J.-Y. Choi, F.M. Hassan, G. Jiang, D.C. Higgins, Y. Zhang, M.A. Hoque, Z. Chen, Adv. Mater, 29 (2017) 1604456.
[39] H. Xie, B. Du, X. Huang, D. Zeng, H. Meng, H. Lin, W. Li, T. Asefa, Y. Meng, Small, 19 (2023) 2303214.
[40] L. Yang, Y. Zhu, X. Yao, C. Du, Z. Han, J. Tian, X. Liu, X. Ma, C. Cao, Energy Storage Materials, 63 (2023) 102972.
[41] M. Hassan, W. Qiu, X. Song, Q. Mao, S. Ren, C. Hao, Journal of Alloys and Compounds, 818 (2020) 152890.
[42] X. Chen, K. Shen, J. Chen, B. Huang, D. Ding, L. Zhang, Y. Li, Chemical Engineering Journal, 330 (2017) 736-745.
[43] F. Zhang, Y. Wei, X. Wu, H. Jiang, W. Wang, H. Li, Journal of the American Chemical Society, 136 (2014) 13963-13966.
[44] 國家同步輻射中心, (2022).
[45] S. Xue, F. Dezhi, H. Silu, S. Xiuli, H. Mingming, W. Zhang, L. Kexun, Separation and Purification Technology, 278 (2021) 119550.
[46] C.C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu, Y. Li, C. Li, R. Zou, J. Yu, Q. Xu, Angewandte Chemie, 132 (2020) 7454-7459.
[47] G.-L. Li, G.-C. Cheng, W.-W. Chen, C.-D. Liu, L.-F. Yuan, B.-B. Yang, C. Hao, Journal of colloid and interface science, 514 (2018) 108-116.
[48] X. Wang, H. Zhang, J. Ye, B. Li, Journal of Power Sources, 556 (2023) 232434.
[49] W. Fang, H. Hu, T. Jiang, G. Li, M. Wu, Carbon, 146 (2019) 476-485.
[50] X. Tang, Y. Wu, W. Zhai, T. Chu, L. Li, B. Huang, T. Hu, K. Yuan, Y. Chen, Composites Communications, 29 (2022) 100994.
[51] X. Li, X. Yang, L. Liu, H. Zhao, Y. Li, H. Zhu, Y. Chen, S. Guo, Y. Liu, Q. Tan, Acs Catalysis, 11 (2021) 7450-7459.
[52] Z. Han, Y. Zhu, X. Yao, H. Peng, C. Du, J. Tian, L. Yang, X. Ma, J. Hou, C. Cao, Applied Catalysis B: Environmental, 337 (2023) 122961.
[53] F. Chang, P. Su, U. Guharoy, R. Ye, Y. Ma, H. Zheng, Y. Jia, J. Liu, Chinese Chemical Letters, 34 (2023) 107462.
[54] L. Wu, R. Zhao, G. Du, H. Wang, M. Hou, W. Zhang, P. Sun, T. Chen, Green Energy & Environment, 8 (2023) 1693-1702.
[55] K.M. Villemson, K.t. Kaare, R. Raudsepp, T. Käämbre, K.j.n. Šmits, P. Wang, A.V. Kuzmin, A. Šutka, B.A. Shainyan, I. Kruusenberg, The Journal of Physical Chemistry C, 123 (2019) 16065-16074.
[56] Y. Li, J. Yang, J. Huang, Y. Zhou, K. Xu, N. Zhao, X. Cheng, Carbon, 122 (2017) 237-246.
[57] Z. Miao, X. Wang, M.C. Tsai, Q. Jin, J. Liang, F. Ma, T. Wang, S. Zheng, B.J. Hwang, Y. Huang, Advanced Energy Materials, 8 (2018) 1801226.
[58] L. Jiao, G. Wan, R. Zhang, H. Zhou, S.H. Yu, H.L. Jiang, Angewandte Chemie, 130 (2018) 8661-8665.
[59] Y. Wang, C. Zhu, S. Feng, Q. Shi, S. Fu, D. Du, Q. Zhang, Y. Lin, ACS applied materials & interfaces, 9 (2017) 40298-40306.
[60] Q. Li, W. Chen, H. Xiao, Y. Gong, Z. Li, L. Zheng, X. Zheng, W. Yan, W.C. Cheong, R. Shen, Advanced materials, 30 (2018) 1800588.
[61] Y. Mao, J. Cheng, H. Guo, L. Qian, J. Tu, W. Yang, Applied Surface Science, 634 (2023) 157679.
[62] L. Deng, L. Qiu, R. Hu, L. Yao, Z. Zheng, X. Ren, Y. Li, C. He, Applied Catalysis B: Environmental, 305 (2022) 121058.
[63] J. Chen, B. Huang, R. Cao, L. Li, X. Tang, B. Wu, Y. Wu, T. Hu, K. Yuan, Y. Chen, Advanced Functional Materials, 33 (2023) 2209315.
[64] F. Liu, L. Shi, S. Song, K. Ge, X. Zhang, Y. Guo, D. Liu, Small, 17 (2021) 2102425.
[65] S.-H. Liu, J.-R. Wu, Electrochimica Acta, 135 (2014) 147-153.
[66] L. Hu, C. Dai, L. Chen, Y. Zhu, Y. Hao, Q. Zhang, L. Gu, X. Feng, S. Yuan, L. Wang, Angewandte Chemie International Edition, 60 (2021) 27324-27329.
[67] H.B. Zhang, Y. Meng, H. Zhong, L. Zhang, S. Ding, L. Fang, T. Li, Y. Mei, P.X. Hou, C. Liu, Carbon Energy, 5 (2023) e289.
[68] J. Wang, C. Hu, L. Wang, Y. Yuan, K. Zhu, Q. Zhang, L. Yang, J. Lu, Z. Bai, Advanced Functional Materials, 33 (2023) 2304277.
[69] J. Lilloja, M. Mooste, E. Kibena-Põldsepp, A. Sarapuu, B. Zulevi, A. Kikas, H.-M. Piirsoo, A. Tamm, V. Kisand, S. Holdcroft, Journal of Power Sources Advances, 8 (2021) 100052.
[70] M. Mooste, T. Tkesheliadze, J. Kozlova, A. Kikas, V. Kisand, A. Treshchalov, A. Tamm, J. Aruväli, J.H. Zagal, A.M. Kannan, International Journal of Hydrogen Energy, 46 (2021) 4365-4377.
[71] R. Sibul, E. Kibena‐Põldsepp, S. Ratso, M. Kook, M.T. Sougrati, M. Käärik, M. Merisalu, J. Aruväli, P. Paiste, A. Treshchalov, ChemElectroChem, 7 (2020) 1739-1747.

無法下載圖示 全文公開日期 2026/08/20 (校內網路)
全文公開日期 2029/08/20 (校外網路)
全文公開日期 2029/08/20 (國家圖書館:臺灣博碩士論文系統)
QR CODE