簡易檢索 / 詳目顯示

研究生: 黃冠儒
Guan-Ru Huang
論文名稱: 簡化深度網絡應用於分割視神經杯盤
A Simplified Deep Network Architecture on Optic Cup and Disc Segmentation
指導教授: 項天瑞
Tien-Ruey Hsiang
口試委員: 項天瑞
Tien-Ruey Hsiang
花凱龍
Kai-Lung Hua
鮑興國
Hsing-Kuo Pao
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 37
中文關鍵詞: 深度學習輕量化模型青光眼檢測視神經杯盤分割
外文關鍵詞: glaucoma screening, optic disc segmentation, optic cup segmentation
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

青光眼是由於視覺神經受損而造成的一系列眼部疾病,甚至會導致永久失去視力。
為了篩檢和診斷出青光眼,杯盤比(cup-to-disc ratio)成為一個關鍵的依據之一。
因此,能自動精準分割眼底鏡影像的視神經盤(Optic Disc)和視神經杯(Optic Cup)是必要的,也成為一個重要的議題。
過去的方法會依賴人工選取特徵的方式進行分割,或者是分別將視神經杯盤分別處理。

隨著深度學習發展,越來越多人提出深度模型來解決眼底鏡分割的任務,但效果容易侷限在某些資料集上。
在我們的論文中,我們提供一個輕量化的深度學習的架構解決同時分割視神經杯盤,同時使用極座標轉換和直方圖等化做為前處理簡化學習的複雜度。
我們的模型主要是使用編碼-解碼模型(Encoder-Decoder)的構造,其中包含我們提出的特徵抽取模組和多輸出模組。
在編碼器方面(Encoder),特徵抽模組使用MobileNetV2的線性瓶頸元件達到簡化模型並維持抽取特徵的效果,再經ASPP擷取出代表不同尺度的特徵。
而解碼器方面(Decoder),結合低層特徵(low-level feature)和ASPP的特徵有助於穩定分割的輪廓
,並使用多輸出模組透過不同的輸出和多標籤的損失函數來調整模型最終結果。

最後,實驗顯示我們的方法可以改善不同的深度網絡模型在是神經杯盤的分割在不同的相機影像上,其中包含 REFUGE、MESSIDOR和RIMONE的資料集。
同時,將我們的方法應用於REFUGE並經由杯盤比的計算進行篩檢青光眼也獲不錯的效果。


Glaucoma is caused by damaged optic nerves, and can lead to permanent vision loss. The cup-to-disk ratio (CDR) is a key criterion for glaucoma diagnosis, therefore an accurate automatic segmentation of the optic disc (OD) and optic cup (OC) in retinal fundus images has become a major research topic.

However, with deeper deep learning models being used to complete a fundus segmentation, the segmentation results remain acceptable only on certain datasets. In this research, a lightweight deep-learning encoder–decoder architecture, which adopts polar coordinate transformation and histogram equalization to simplify the learning complexity, is proposed for the simultaneous segmentation of OD and OC. The proposed model employs an encoder–decoder architecture consisting of a feature extraction module and a multi-output module to both simplify the model and to adjust the result through different outputs and multilabel loss functions.

Experiment results demonstrate that the proposed approach outperforms other deep network models on OD and OC segmentation over the datasets REFUGE, MESSIDOR, and RIM-ONE, which contain images captured from cameras with various specifications. In addition, better results on glaucoma screening through CDR calculation were obtained on the REFUGE dataset with the proposed method.

1 Introduction 2 Related Studies 3 Proposed Method 4 Experiment 5 Conclusion 6.References

[1] Y.-C. Tham, X. Li, T. Y. Wong, H. A. Quigley, T. Aung, and C.-Y. Cheng, “Global
prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis,” Ophthalmology, vol. 121, no. 11, pp. 2081–2090,
2014.
[2] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.
[3] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolutional neural network for mobile devices,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 6848–6856, 2018.
[4] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Hajishirzi, “Espnet: Efficient
spatial pyramid of dilated convolutions for semantic segmentation,” in Proceedings
of the European Conference on Computer Vision (ECCV), pp. 552–568, 2018.
[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.
[6] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3431–3440, 2015.
[7] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros, et al., “Development and validation of
a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs,” Jama, vol. 316, no. 22, pp. 2402–2410, 2016.
[8] H. Fu, Y. Xu, D. W. K. Wong, and J. Liu, “Retinal vessel segmentation via deep
learning network and fully-connected conditional random fields,” in 2016 IEEE 13th
international symposium on biomedical imaging (ISBI), pp. 698–701, IEEE, 2016.
23
[9] B. Al-Bander, B. Williams, W. Al-Nuaimy, M. Al-Taee, H. Pratt, and Y. Zheng,
“Dense fully convolutional segmentation of the optic disc and cup in colour fundus
for glaucoma diagnosis,” Symmetry, vol. 10, no. 4, p. 87, 2018.
[10] J. I. Orlando, H. Fu, J. B. Breda, K. van Keer, D. R. Bathula, A. Diaz-Pinto, R. Fang,
P.-A. Heng, J. Kim, J. Lee, et al., “Refuge challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs,” Medical image analysis, vol. 59, p. 101570, 2020.
[11] F. Fumero, S. Alayón, J. L. Sanchez, J. Sigut, and M. Gonzalez-Hernandez, “Rimone: An open retinal image database for optic nerve evaluation,” in 2011 24th international symposium on computer-based medical systems (CBMS), pp. 1–6, IEEE,
2011.
[12] X. Zhu and R. M. Rangayyan, “Detection of the optic disc in images of the retina
using the hough transform,” in 2008 30th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, pp. 3546–3549, IEEE, 2008.
[13] A. Aquino, M. E. Gegúndez-Arias, and D. Marín, “Detecting the optic disc boundary
in digital fundus images using morphological, edge detection, and feature extraction
techniques,” IEEE transactions on medical imaging, vol. 29, no. 11, pp. 1860–1869,
2010.
[14] P. Pallawala, W. Hsu, M. L. Lee, and K.-G. A. Eong, “Automated optic disc localization and contour detection using ellipse fitting and wavelet transform,” in European
conference on computer vision, pp. 139–151, Springer, 2004.
[15] A. Giachetti, L. Ballerini, and E. Trucco, “Accurate and reliable segmentation of
the optic disc in digital fundus images,” Journal of Medical Imaging, vol. 1, no. 2,
p. 024001, 2014.
[16] J. Lowell, A. Hunter, D. Steel, A. Basu, R. Ryder, E. Fletcher, and L. Kennedy,
“Optic nerve head segmentation,” IEEE Transactions on medical Imaging, vol. 23,
no. 2, pp. 256–264, 2004.
24
[17] M. C. V. S. Mary, E. B. Rajsingh, J. K. K. Jacob, D. Anandhi, U. Amato, and
S. E. Selvan, “An empirical study on optic disc segmentation using an active contour
model,” Biomedical Signal Processing and Control, vol. 18, pp. 19–29, 2015.
[18] P. S. Mittapalli and G. B. Kande, “Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma,” Biomedical Signal Processing
and Control, vol. 24, pp. 34–46, 2016.
[19] G. B. Kande, P. V. Subbaiah, and T. S. Savithri, “Unsupervised fuzzy based vessel
segmentation in pathological digital fundus images,” Journal of medical systems,
vol. 34, no. 5, pp. 849–858, 2010.
[20] C. Li, C.-Y. Kao, J. C. Gore, and Z. Ding, “Implicit active contours driven by local
binary fitting energy,” in 2007 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–7, IEEE, 2007.
[21] D. W. K. Wong, J. Liu, N. M. Tan, F. Yin, B.-H. Lee, and T. Y. Wong, “Learningbased approach for the automatic detection of the optic disc in digital retinal fundus
photographs,” in 2010 Annual International Conference of the IEEE Engineering in
Medicine and Biology, pp. 5355–5358, IEEE, 2010.
[22] J. Cheng, J. Liu, Y. Xu, F. Yin, D. W. K. Wong, N.-M. Tan, D. Tao, C.-Y. Cheng,
T. Aung, and T. Y. Wong, “Superpixel classification based optic disc and optic
cup segmentation for glaucoma screening,” IEEE transactions on medical imaging,
vol. 32, no. 6, pp. 1019–1032, 2013.
[23] Y. Xu, L. Duan, S. Lin, X. Chen, D. W. K. Wong, T. Y. Wong, and J. Liu, “Optic
cup segmentation for glaucoma detection using low-rank superpixel representation,”
in International Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 788–795, Springer, 2014.
[24] K.-K. Maninis, J. Pont-Tuset, P. Arbeláez, and L. Van Gool, “Deep retinal image understanding,” in International conference on medical image computing and
computer-assisted intervention, pp. 140–148, Springer, 2016.
25
[25] Y. Guo, B. Zou, Z. Chen, Q. He, Q. Liu, and R. Zhao, “Optic cup segmentation using
large pixel patch based cnns,” in Proc. the Ophthalmic Medical Image Analysis Third
International Workshop (OMIA 2016), pp. 129–136, 2016.
[26] A. Sevastopolsky, “Optic disc and cup segmentation methods for glaucoma detection
with modification of u-net convolutional neural network,” Pattern Recognition and
Image Analysis, vol. 27, no. 3, pp. 618–624, 2017.
[27] S. M. Shankaranarayana, K. Ram, K. Mitra, and M. Sivaprakasam, “Joint optic disc
and cup segmentation using fully convolutional and adversarial networks,” in Fetal,
Infant and Ophthalmic Medical Image Analysis, pp. 168–176, Springer, 2017.
[28] H. Fu, J. Cheng, Y. Xu, C. Zhang, D. W. K. Wong, J. Liu, and X. Cao, “Disc-aware
ensemble network for glaucoma screening from fundus image,” IEEE transactions
on medical imaging, vol. 37, no. 11, pp. 2493–2501, 2018.
[29] H. Fu, J. Cheng, Y. Xu, D. W. K. Wong, J. Liu, and X. Cao, “Joint optic disc and cup
segmentation based on multi-label deep network and polar transformation,” IEEE
transactions on medical imaging, vol. 37, no. 7, pp. 1597–1605, 2018.
[30] X. Sun, Y. Xu, M. Tan, H. Fu, W. Zhao, T. You, and J. Liu, “Localizing optic disc and
cup for glaucoma screening via deep object detection networks,” in Computational
Pathology and Ophthalmic Medical Image Analysis, pp. 236–244, Springer, 2018.
[31] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with
atrous separable convolution for semantic image segmentation,” in Proceedings of
the European conference on computer vision (ECCV), pp. 801–818, 2018.
[32] H. Yu, E. S. Barriga, C. Agurto, S. Echegaray, M. S. Pattichis, W. Bauman, and
P. Soliz, “Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets,” IEEE Transactions on information technology in biomedicine, vol. 16, no. 4, pp. 644–657, 2012.
[33] B. Dashtbozorg, A. M. Mendonça, and A. Campilho, “Optic disc segmentation using
the sliding band filter,” Computers in biology and medicine, vol. 56, pp. 1–12, 2015.
26
[34] S. Roychowdhury, D. D. Koozekanani, S. N. Kuchinka, and K. K. Parhi, “Optic
disc boundary and vessel origin segmentation of fundus images,” IEEE journal of
biomedical and health informatics, vol. 20, no. 6, pp. 1562–1574, 2015.
[35] F. Girard, C. Kavalec, S. Grenier, H. B. Tahar, and F. Cheriet, “Simultaneous macula
detection and optic disc boundary segmentation in retinal fundus images,” in Medical
Imaging 2016: Image Processing, vol. 9784, p. 97841F, International Society for
Optics and Photonics, 2016.
[36] M. Abdullah, M. M. Fraz, and S. A. Barman, “Localization and segmentation of
optic disc in retinal images using circular hough transform and grow-cut algorithm,”
PeerJ, vol. 4, p. e2003, 2016.
[37] J. Sigut, O. Nunez, F. Fumero, M. Gonzalez, and R. Arnay, “Contrast based circular
approximation for accurate and robust optic disc segmentation in retinal images,”
PeerJ, vol. 5, p. e3763, 2017.
[38] A. Almazroa, S. Alodhayb, K. Raahemifar, and V. Lakshminarayanan, “Optic cup
segmentation: type-ii fuzzy thresholding approach and blood vessel extraction,”
Clinical ophthalmology (Auckland, NZ), vol. 11, p. 841, 2017.

無法下載圖示 全文公開日期 2025/08/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE