簡易檢索 / 詳目顯示

研究生: 鄭育政
Yu-cheng Cheng
論文名稱: 具襟翼之翼形應用於風扇設計的可能性研究
Feasibility study of the Flapped Airfoil Applied to small Axial-Flow Fan
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 洪俊卿
Jin-Tsing Hong
陳呈芳
Cheng-Fang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 203
中文關鍵詞: 襟翼軸流風扇Fluent
外文關鍵詞: Flap, Axial Fan, Fluent
相關次數: 點閱:323下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文主要目標為建立NACA65系列翼形之資料庫了解翼形增加襟翼結構後之氣動性能,以及增加襟翼之翼形結構應用於軸流風扇時,其流場、壓力場之變化與增加風扇性能的可行性探討。首先將NACA4412翼形實驗數據與數值計算結果比對,其中紊流模型使用LES(大尺度渦漩模擬)計算,而比對後誤差皆在20%之可接受範圍,其中升力與阻力係數的趨勢也相同。接著把翼形改成65系列,作一系列不同雷諾數與攻角之氣動特性分析,並製成資料庫以供風扇設計使用。再來將NACA4412翼型與增加襟翼之結構透過數值計算後,分析兩者之升阻力係數、流場與壓力場,發現其增加襟翼結構之翼形升力比原始翼形增加不少;其中攻角零度時升力增加112%、攻角六度時升力增加46%、攻角為十度時升力增加29%且攻角為十二度時升力增加24%。
在得知翼形增加襟翼結構後升力能大幅度地上升,故將此結構運用於軸流風扇上,因此分別設計採用NACA4412翼形與增加襟翼結構之兩款風扇;結果發現具有襟翼結構之風扇最大流量比原型增加約4%,而在最大壓力則比原型風扇少了3%左右,兩者最大差異是在靜壓為1mm-Aq時,具有襟翼設計之流量比原型風扇減少了38%。仔細分析後發現襟翼風扇葉片下方產生極大的壓力,且越靠近輪殼的區域壓力越大,造成扇葉下方高壓區的氣流往負壓區傳遞,而導致相鄰扇葉吸風面的負壓減少;且在風扇入口處造成流體往外推擠,嚴重地影響葉片吸風面吸引流體進入,且越靠近輪殼的區域此現象越嚴重。從文獻得知翼端間隙對風扇具有嚴重的影響,因此將翼端間隙之參數應用於襟翼風扇上,發現襟翼風扇其性能不因翼端間隙的大小而改變,綜合歸納上述研究成果,清楚地了解襟翼結構在風扇之三維流場的物理現象,及其造成風扇性能降低之機制,這可做為風扇葉片改良設計之參考。


To prevent the overheating and unstable problems, the heat dissipation of electronic products has become a critical and challenging issue due to the demand of dimension reduction. Nowadays, because of its effective heat removing ability and low manufacturing cost, heatsink assembly is the widely-adopted cooling module for handling the thermal- management task. A heatsink assembly is a combination of heatsink and cooling fan; thus the cooling fan plays a vital role and becomes the topic of this thesis. This research focuses on investigating the feasibility of using the flapped airfoil on the small axial-flow fan to enhance its aerodynamic performances, especially the static pressure. The Gurney flap is a small flat plate attached on the trailing edge of airfoil, and it can avoid the unwanted flow from the pressure surface to suction surface for enhancing the lift force substantially.
In this study, the flapped airfoil is utilized in the fan design procedure since the increased lift force on blade may be transferred to the pressure gain, which enables the cooling airflow to overcome the system resistance. Nevertheless, form the simulation results, it is found that some local pressure raises are found on the suction surface of blade, but the total pressure of the discharging air is similar to that of the original fan. To explore the physical mechanism, the comprehensive flow visualization is carried out numerically to identify an unexpected leakage flow, which stems from the pressure surface of one blade to the suction surface of next blade. Evidently, different from the case of single airfoil, this leakage phenomenon is generated by the significant pressure difference caused by the flapped airfoil. It follows that this flow not only diminishes the pressure-raise effect, but also forms an obstacle for the incoming flow near the fan inlet. Consequently, the expected performance enhancement on the axial fan disappears completely. In conclusion, the proposed flapped-airfoil design does not function as expected unless the reversed leakage flow is ceased by proper arrangements based on the flow pattern obtained in this work.

摘 要I AbstractIII 致 謝V 目 錄VI 圖索引X 表索引XV 符號索引XVI 第一章 緒論1 1.1 前言1 1.2 文獻回顧3 1.2.1 風扇設計4 1.2.2 葉片性能改善9 1.2.3 數值方法13 1.3 研究動機與方法15 1.4 本文大綱17 第二章 風扇設計23 2.1 風扇設計理論23 2.1.1 流體對靜止翼列的作用25 2.1.2 移動翼列對流體的作用34 2.1.3 無摩擦阻力之葉片計算38 2.1.4 含摩擦阻力之葉片計算42 2.2 軸流風扇設計流程46 2.2.1 軸流風扇架構46 2.2.2 三維葉片設計49 2.2.3 三維風扇55 第三章 數值方法61 3.1 統御方程式61 3.2 紊流模式理論63 3.2.1 直接數值模擬64 3.2.2 雷諾平均數值模擬法66 3.2.3 大尺度渦漩模擬法71 3.3 紊流模式73 3.3.1 求解雷諾平均數值紊流黏滯係數74 3.3.2 求解次尺度紊流黏滯係數76 3.4 邊界條件78 3.5 數值計算方法81 3.5.1 求解流程81 3.5.2 離散方法84 3.5.3 速度與壓力耦合94 第四章 翼形與襟翼結構之分析98 4.1 翼剖面參數99 4.2 網格建立與數值方法 104 4.3 數值計算116 4.3.1 網格獨立性驗證116 4.3.2 數值模擬與實驗比對121 4.4 翼型增加襟翼結構之氣動特性124 4.4.1 增加襟翼結構翼型之流場分析124 4.4.2 增加襟翼結構翼型之壓力分析134 4.5 NACA65系列翼形之分析結果141 第五章 數值模型建立與數值分析148 5.1 模型網格之建立149 5.1.1 邊界條件155 5.1.2 紊流模式與求解設定157 5.2 網格獨立性測試158 5.3 原型與含襟翼設計的風扇之分析與探討159 5.3.1 整體流場之分析比較163 5.3.2 壓力場之分析比較166 5.3.3 細部流場之分析比較174 5.4 不同翼端間隙之襟翼風扇性能180 5.4.1 翼端間隙之壓力場分析182 5.4.2 翼端間隙之流場分析187 5.5 結果與討論189 第六章 結論與建議191 6.1 結論191 6.2 建議195 參考文獻198

[1] Eck, B., “Fans: Design and Operation of Centrifugal, Axial-Flow, and Cross-Flow Fans”, Pergamon Press, New York, 1973
[2] Shepherd, D. G., “Principles of Turbomachinery”, Macmillan Publishing CO. Inc., New York, 1956.
[3] 押田良輝,”送風機技術讀本”,復興出版社,1979年。
[4] Wallis, R. A., “Axial Flow Fans & Ducts”, John Wiley & Sons, Inc., New York, 1983.
[5] Horlock, J. H., “Axial flow Compressors”, Krieger, 1973.
[6] 聶能光、李福忠,“風機節能與降噪”,科學出版社,1990年。
[7] 林國楨,“汽車引擎冷卻風扇設計發展”,機械工業雜誌,204-214頁,民國八十年九月。
[8] 簡煥然、施銘銓,“軸流風扇性能測試技術與扇葉技術”,機械工業雜誌,269-288頁,民國八十一年八月。
[9] 施銘銓,“小型冷卻風扇開發介紹”,機械工業雜誌,148-156頁,民國八十四年五月。
[10] 張瑞釗、許福忠、施良璘、張起領,“渦輪葉片參數設計法”,中山科學研究院第一研究所研究報告,民國七十五年六月。
[11] 許文英、陳世雄,“軸流式渦輪葉片參數設計”,中國航空太空學會第三十七界學術研討會論文集,1995。
[12] 蘇聖斌、陳世雄,“軸流泵葉輪與導葉之設計分析”,中國機械工程學會第十三屆全國學術研討會論文集,298-306頁,1996年。
[13] 林至遠,“軸流風扇的性能提昇與測試”,國立成功大學航空太空研究所碩士論文,1997年。
[14] 林育洲,“軸流風扇之數值與實驗分析”,國立台灣科技大學機械工程系碩士論文,1998年。
[15] 簡宏斌,“PC風扇之三維數值模擬分析”,國立台灣科技大學機械工程系碩士論文,1999年。
[16] 林鴻志,“Pentium 4 處理器冷卻風扇之製造與實驗研究”,國立台灣科技大學機械工程系碩士論文,1999年。
[17] Santos, L. C. and Sankar, L. N., “Inverse Design of Aerodynamic Shapes at High Speed Flow”, AIAA Paper 94-0090, 1994.
[18] Dang, T. and Isgro, V., “Euler-Based Inverse Method for Turbomechine Blades Part 1: Two-Dimensional Cascades”, AIAA Journal, Vol. 33, No.12, pp. 2309-2315, 1995.
[19] Damle, S. and Dang, T. “Practical Use of Three-Dimensional Inverse Method for Compressor Blade Design”, ASME Journal of Turbomachinery, Vol. 121, pp. 321-325, 1999.
[20] Nerurkar, A. C., Dang, T. Q., Reddy, E. S., and Reddy, D. R., “Design Study of Turbomachinery Blade by Optimization and Inverse Techniques”, AIAA-96-2555, Lafe Buena Vista, FL, 1996.
[21] Pierret, S. and Van den Braembussche, R. A., “Turbomachinery Blade Design Using a Navier-Stokes Solver and Artificial Neural Network”, ASME Journal of Turbomachinery, Vol. 121, No. 2, pp. 326-332, 1998.
[22] Obayashi, S. and Takanashi, S., “Genetic Optimization of Target Pressure Distributions for Inverse Design Methods”, AIAA Journal, Vol. 34, No. 5, pp. 881-886, 1996.
[23] Downie, R. J., Thompson, M. C., and Wallis, R. A., “An Engineering Approach to Blade Design for Low to Medium Pressure Rise Rotor-Only Axial Fans”, Experimental Thermal and Fluid Science, Vol. 6, No. 4, pp. 376-401, 1993.
[24] Vad, J., “Three-Dimensional Flow in Axial Flow Fans of Non-Free Vortex Design”, International Journal of Heat and Flow, Vol. 19, No. 6, pp. 601-607, 1998.
[25] Sorensen, D. N., “Minimizing the Trailing Edge Noise from Rotor-Only Axial Fans Using Design Optimization”, Journal of Sound and Vibration, Vol. 247, No. 2, pp. 305-323, 2001.
[26] Kodama, Y. and Fukano, T., “Flow Characteristics of the Sound Pressure Level and Its Prediction for a Low Pressure Axial Flow Fan”, 日本機械學會論文集,53卷492號,2514-2520頁,1987年。
[27] 洪國泰,“小型軸流風扇設計以及模擬與實驗之整合研究“,國立台灣科技大學機械工程系碩士論文,2007年。
[28] 蔡明倫,“風扇性能評估與設計方法之整合研究“,國立台灣科技大學機械工程系博士論文,2010年。
[29] Longhouse, R. E., “Vortex Shedding Noise of Low Tip Speed, Axial Flow Fans”, Journal of Sound and Vibration, Vol. 53, No.1, pp. 25-46, 1997.
[30] 林顯群、陳文亮、羅玉山,”軸流風扇之性能及噪音分析”,中國航空太空學會第四十屆學術研討會,上冊,87-94頁,1998年。
[31] Katagiri, H., Fujikake, K., and Yamada, K., “Automotive Mixed Flow Fan with Guide Vanes on Blade Surfaces”, SAE Preprints, pp. 17, 1980.
[32] 周建安,”小型冷卻風扇在不同流阻下之性能研究”,國立台灣科技大學機械工程技術研究所博士論文,2004年。
[33] Li, Y. C., Wang, J. J., and Hua, J. ”Experimental Investigations on the Effects of Divergent Trailing Edge and Gurney Flaps on a Supercritical Airfoil, ” Science Direct, Vol. 11 , pp. 93-95, 2006.
[34] 陳文亮,”小型冷卻風扇之性能與噪音改善研究”,國立台灣科技大學機械工程技術研究所碩士論文,1998年。
[35] Lee, G. H., Baek, J. H., and Myung, H. J., “Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan”, Journal of Flow, Turbulence and Combustion, Vol. 70, No.1-4, pp. 241-265, 2003.
[36] Nurzia, F. and Puddu, P., ”Experimental Investigation of Secondary Flows in a Low Hub-Tip Ratio Fan”, ASME Paper, No. 94-GT-377, 1994.
[37] Puddu, P., “Tip Leakage Flow Characteristic Downstream of an Axial Flow Fan”, ASME Paper, No. 96-GT-508, 1996.
[38] Arnone, A., “Viscous Analysis of Three-Dimensional Rotor Flows Using a Multigrid Method”, NASA TM-106266, 1993.
[39] Chand, K. K. and Lee, K. D., “Turbomachinery Blade Optimization Using the Navier-Stokes Equations”, AIAA Paper 98-0933, 36th Aerospace Sciences Meeting & Exhibit, Reno, NV, January 1998.
[40] Amano, R. S. and Cheng, X. C., “Aerodynamic Blade Optimal Design Of Turbomachinery”, Proceedings of the International Gas Turbine Congress, Tokyo, November 2-7, 2003.
[41] Oro, F. J., Diaz, K. A., Morros, C. S., and Tajadura, R. B., ”Unsteady Flow Analysis of the Stator-Rotor Interaction in an Axial Flow Fan”, Proceedings of ASME FEDSM’03 4th ASME/JSME Joint Fluids Engineering Conference, Honolulu, Hawaii, USA, July 6-10, 2003.
[42] Kokturk, T.,”Design and Performance Analysis of a Reversible Axial Flow Fan”, M.S. Thesis, Middle East Technical University, February 1981.
[43] Elhadi, E. E. and Wu, K., “Study of Tip Vortex in Open Axial Flow Fan Using CFD and PIV Techniques”, 4th Int. Conf. on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT2005), Egypt, Sept. 2005.
[44] 游裕傑,“離心式電腦風扇的設計與分析”,國立成功大學機械工程研究所碩士論文,2002 年。
[45] 許豐麟,”新式筆記型電腦冷卻風扇之數值模擬”,國立台灣科技大學機械工程技術研究所碩士論文,2000年。
[46] 黃家烈,”筆記型電腦散熱風扇之研究”,國立台灣科技大學機械工程技術研究所博士論文,2001年。
[47] 吳兌倩,”流線型鰭片散熱座數值與實驗之整合研究”,國立台灣科技大學機械工程技術研究所碩士論文,2004年。
[48] You, D. and Moin, P., “Large Eddy Simulation of Flow Separation over an Airfoil with Synthetic Jet Control,” Center for Turbulence Research Annual Research Briefs, 2006.
[49] Abbott, I. H. and Doenhoff, A. E. Von, “Theory of Wing Sections, Including a Summary of Airfoil Data”, Dover, N.Y., 1959.
[50] Bleier, F. P., “Fan Handbook, Selection, Application, and Design”, McGraw Hill, 1997.
[51] Wolfe, W. P. and Ochs, S. S., “CFD Calculations of S809 Aerodynamic Characteristics,” AIAA-97-0973, 1997.
[52] http://www.casde.iitb.ac.in/IMSL/mav/airfoil.pdf

QR CODE