簡易檢索 / 詳目顯示

研究生: Parindra Kusriantoko
Parindra - Kusriantoko
論文名稱: 多種成分之介孔生物活性玻璃降解行為及生物活性之研究
Degradation behavior and bioactivity of various compositional mesoporous bioactive glasses
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 梁元彰
Yuan-Chang Liang
王丞浩
Chen-Hao Wang
吳昌謀
Chang-Mou Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 122
中文關鍵詞: 介孔生物活性玻璃SiO2-CaO-P2O5降解性生物活性
外文關鍵詞: Mesoporous bioactive glass, SiO2-CaO-P2O5, degradability, bioactivity
相關次數: 點閱:410下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

噴霧熱解法被成功的用於合成不同SiO2-CaO-P2O5成分之介孔生物活性玻璃(Mesoporous bioactive glasses, MBGs),於本研究之重點為將分別58S、68S以及76S等三種不同成分之MBG對其生物活性與降解性進行更深入得探討。人體模擬體液(Simulated body fluid, SBF) 被做為MBG之降解性以及生物活性檢測之介質進行為期30天的體外生物檢測,期間每天對於MBG之塊材進行量測其重量,並記錄重量損失,並每天替換SBF同時測量其pH值用已推測MBG於浸泡入SBF之中可能產生之反應。最後分別使用X光繞射儀進行其相分析鑑定、傅立業轉換紅外線光譜儀得知其化學鍵結之改變、及其表面形貌以及成份分析運用掃描式電子顯微鏡及能量色散光譜之技術得到結果。在本研究之中探討了MBG之成份對於降解性以及生物活性之影響,並於研究結果顯示58S MBG有最快的降解速率其次為68S最後為76S,其中68S以及76S MBG在浸泡入SBF之後一天即形成磷灰石層,然而58S需要三天的時間,正說明MBG的降解行為與磷灰石層的形成有非常重要的關聯,以此對於MBG降解性與磷灰石層形成之機制也做了更進一步的探討。


Spray pyrolysis has been successfully used to synthesize mesoporous bioactive glasses (MBGs) with different compositions of SiO2-CaO-P2O5. In this study, the degradability and bioactivity of 58S, 68S and 76S MBG samples were studied. Simulated body fluid (SBF) solution was used as a medium to conduct the degradation test and also bioactivity for 30 days. The weight loss of MBG bulks were measured every day during the in-vitro degradation test. The pH value changes in SBF solution was also monitored every day in order to know the reaction that may occur in SBF solution. Some characterization methods, including x-ray diffraction analysis (XRD), fourier transform infrared (FTIR), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) have been used to know the phase changes, chemical bonding, surface morphology and compositional analysis respectively. In this research, the effect of composition on the degradation behavior and bioactivity were discussed. Since the degradation behavior of MBG was correlated to the apatite conversion. Furthermore, the mechanism of biodegradability on MBG to apatite conversion was also investigated. 58S MBG had the high degradation rate followed by 68S and 76S respectively. 68S and 76S MBG had ability to form apatite phase with 1 day of immersion while 58S MBG required 3 days of immersion.

摘要 I ABSTRACT II ACKNOWLEDGEMENTS III CONTENTS IV LISTS OF TABLES VII LISTS OF FIGURES VIII CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 4 2.1 Bone and scaffolding 4 2.1.1 Basic of bones 4 2.1.2 Scaffolding 6 2.2 Bioceramics 9 2.3 Bioactive materials 12 2.3.1 Introduction 12 2.3.2 Characteristics 12 2.3.3 Types 14 2.4 Bioactive glass 15 2.4.1 Compositions 16 2.4.2 Synthesis methods 18 2.4.3 Bonding mechanism of bioactive glass 20 2.5 Mesoporous bioactive glass 23 2.5.1 Introduction 23 2.5.2 Synthesis methods 25 2.6 Degradation of bioactive glass through apatite conversion and the effect of its compositions 26 2.7 Spray pyrolysis 28 2.7.1 Equipment 29 2.7.2 Particle formation mechanism 31 CHAPTER 3 MATERIAL AND EXPERIMENTAL PROCEDURE 32 3.1 Chemicals 32 3.2 Experimental equipment 33 3.3 Material preparation 34 3.3.1 Spray pyrolysis procedures 34 3.3.2 Die pressing and sintering 37 3.4 Materials characterization 37 3.4.1 X-ray diffraction 38 3.4.2 Fourier transform infrared spectroscopy 38 3.4.3 Scanning electron microscope 38 3.4.4 Transmission electron microscope 39 3.4.5 Thermogravimetric analysis 39 3.5 In-vitro degradation test 40 3.5.1 Weight loss test 40 3.5.2 pH change 43 3.5.3 Bioactivity 43 CHAPTER 4 RESULTS AND DISCUSSION 44 4.1 Results 44 4.1.1 Initial characterizations of MBG powders 44 4.1.1.1 Morphological and compositional analysis 44 4.1.1.1 Transmission electron microscope 47 4.1.1.2 Phase analysis 50 4.1.1.3 Thermal analysis 55 4.1.1.4 Chemical bonding analysis 56 4.1.2 In-vitro degradation test 57 4.1.2.1 Accumulated weigh loss 58 4.1.2.2 pH changes in SBF solution 60 4.1.3 Phase and chemical bonding identification after in-vitro test 62 4.1.3.1 Phase analysis 62 4.1.3.2 Chemical bonding analysis 66 4.1.4 Morphological and compositional analysis after in-vitro test 70 4.1.4.1 Surface morphology 70 4.1.4.2 Change of Si, Ca, P elements on surface of MBG 74 4.2 Discussions 78 4.2.1 Initial characterization of MBG powder 78 4.2.1.1 Morphological and compositional analysis 78 4.2.1.2 Crystallization of as-received MBG powders 80 4.2.1.3 Remained carbon during spray pyrolysis process 83 4.2.2 In-vitro degradation test and bioactivity 83 4.2.2.1 Degradability of MBGs 84 4.2.2.2 Bioactivity of MBGs 89 4.2.3 Mechanism of apatite growth on MBG surface 93 CHAPTER 5 CONCLUSIONS 100 CHAPTER 6 FUTURE WORKS 101 REFERENCES 102

[1] Lysaght, M.J. and J.A. O’Loughlin, Demographic Scope and Economic Magnitude of Contemporary Organ Replacement Therapies. ASAIO Journal, 2000. 46(5): p. 515-521.
[2] The World Medical Market Fact Book. 2008, London: Espicom.
[3] Medical Technology in Australia: Key facts and figures. 2014, Sydney: Occasional Paper Series.
[4] Lysaght, M.J. and J. Reyes, The growth of tissue engineering. Tissue Eng, 2001. 7(5): p. 485-93.
[5] Donaruma, L.G., Definitions in biomaterials, D. F. Williams, Ed., Elsevier, Amsterdam, 1987, 72 pp. Journal of Polymer Science Part C: Polymer Letters, 1988. 26(9): p. 414-414.
[6] Ratner, B.D., et al., Biomaterial Science : An Introduction to Materials in Medicine. 3rd ed. 2013, New York: Elsevier.
[7] Hench, L.L., et al., Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 1971. 5(6): p. 117-141.
[8] Hench, L.L., Bioceramics: From Concept to Clinic. Journal of the American Ceramic Society, 1991. 74(7): p. 1487-1510.
[9] Hench, L.L., Bioactive materials: The potential for tissue regeneration. Journal of Biomedical Materials Research, 1998. 41(4): p. 511-518.
[10] Hench, L.L., The story of Bioglass. J Mater Sci Mater Med, 2006. 17(11): p. 967-78.
[11] Hench, L.L., An Introduction to Bioceramics. 2013, London: Imperial College Press.
[12] Li, R., A.E. Clark, and L.L. Hench, An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater, 1991. 2(4): p. 231-9.
[13] Vallet-Regi, M., Ceramics for medical applications. Journal of the Chemical Society, Dalton Transactions, 2001(2): p. 97-108.
[14] Shih, S.-J., Y.-J. Chou, and L.V.P. Panjaitan, Synthesis and characterization of spray pyrolyzed mesoporous bioactive glass. Ceramics International, 2013. 39(8): p. 8773-8779.
[15] Chou, Y.-J., Microstructure and bioactivity correlation of one-step synthesised bioactive glass, in Material Science and Engineering. 2013, National Taiwan University of Science and Technology: Taipei.
[16] Liu, Y., J. Lim, and S.H. Teoh, Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv, 2013. 31(5): p. 688-705.
[17] Rahaman, M.N., et al., Bioactive glass in tissue engineering. Acta Biomater, 2011. 7(6): p. 2355-73.
[18] Steele, D.G. and C.A. Bramblett, The Anatomy and Biology of the Human Skeleton. 1988, Texas: Texas A&M University Press.
[19] Khan, A.F., et al., Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration. Materials Science and Engineering: C, 2014. 35(0): p. 245-252.
[20] Bhat, S.V., Biomaterials. 2002, Pangbourne: Springer.
[21] Murugan, R. and S. Ramakrishna, Development of nanocomposites for bone grafting. Composites Science and Technology, 2005. 65(15–16): p. 2385-2406.
[22] Griffith, L.G., Polymeric biomaterials. Acta Materialia, 2000. 48(1): p. 263-277.
[23] Agrawal, C.M. and R.B. Ray, Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res, 2001. 55(2): p. 141-50.
[24] Hayashi, T., Biodegradable polymers for biomedical uses. Progress in Polymer Science, 1994. 19(4): p. 663-702.
[25] Reis, R.L., et al., Natural-based polymers for biomedical applications. 2008, Cambridge: Woodhead Publishing Limited.
[26] Planell, J.A., et al., Bone repair biomaterials. 2009, Cambridge: Woodhead Publishing Limited.
[27] Callister, W.D.J., Materials science and engineering: an introduction. 7th ed. 2007, New york: John Wiley & Sons.
[28] LeGeros, R. and J. Legeros, Phosphate Minerals in Human Tissues, in Phosphate Minerals, J. Nriagu and P. Moore, Editors. 1984, Springer Berlin Heidelberg. p. 351-385.
[29] Hench, L.L. and J. Wilson, An introduction to bioceramics. 1993, Singapore: World Scientific.
[30] Gauthier, O., et al., Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: a comparative study 3 and 8 weeks after implantation in rabbit bone. J Mater Sci Mater Med, 2001. 12(5): p. 385-90.
[31] Bandyopadhyay, A., et al., Calcium Phosphate-Based Resorbable Ceramics: Influence of MgO, ZnO, and SiO2 Dopants. Journal of the American Ceramic Society, 2006. 89(9): p. 2675-2688.
[32] Klein, C.P., P. Patka, and W. den Hollander, Macroporous calcium phosphate bioceramics in dog femora: a histological study of interface and biodegradation. Biomaterials, 1989. 10(1): p. 59-62.
[33] Teoh, S.H., M. Sivaramakrishnan, and R. Thampuran, Tensile and fracture properties of titanium-polymer interpenetrating network composites. Journal of Materials Science Letters, 1996. 15(17): p. 1478-1480.
[34] Hutmacher, D.W., Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000. 21(24): p. 2529-2543.
[35] Hulbert, S.F., et al., History of bioceramics. Ceramics International, 1982. 8(4): p. 131-140.
[36] Cao, W. and L.L. Hench, Bioactive materials. Ceramics International, 1996. 22(6): p. 493-507.
[37] Bohner, M. and J. Lemaitre, Can bioactivity be tested in vitro with SBF solution? Biomaterials, 2009. 30(12): p. 2175-2179.
[38] Kokubo, T., Surface chemistry of bioactive glass-ceramics. Journal of Non-Crystalline Solids, 1990. 120(1–3): p. 138-151.
[39] Ohtsuki, C., T. Kokubo, and T. Yamauro, Compositional dependence of bioactivity of glasses in the system CaO-SiO2-Al2O3: itsin vitro evaluation. Journal of Materials Science: Materials in Medicine, 1992. 3(2): p. 119-125.
[40] Anthony, J.W., et al., "Hydroxylapatite" Handbook of Mineralogy. 4th ed. 2000, Chantilly VA: Mineralogical Society of America.
[41] Vallet-Regi, M., C.V. Ragel, and Antonio J. Salinas, Glasses with Medical Applications. European Journal of Inorganic Chemistry, 2003. 2003(6): p. 1029-1042.
[42] Valimaki, V.-V. and H. Aro, Molecular basis for action of bioactive glasses as bone graft substitute. Scandinavian journal of surgery, 2006. 95(2): p. 95-102.
[43] Al-Noaman, A., et al., Effect of FA addition on bioactivity of bioactive glass coating for titanium dental implant: Part II—Composite coating. Journal of Non-Crystalline Solids, 2013. 364: p. 99-106.
[44] Wu, C. and J. Chang, Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application. Interface Focus, 2012: p. rsfs20110121.
[45] 2015 [cited 2015 25th april]; Available from: http://www.sciencedirect.com
[46] Ohtsuki, C., T. Kokubo, and T. Yamamuro, Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. Journal of Non-Crystalline Solids, 1992. 143(1): p. 84-92.
[47] Huang, W., et al., Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci Mater Med, 2006. 17(7): p. 583-96.
[48] Huang, W., et al., Mechanisms for converting bioactive silicate, borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solution. Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B-European Journal of Glass Science and Technology Part B, 2006. 47(6): p. 647-658.
[49] Saravanapavan, P., et al., Bioactivity of gel–glass powders in the CaO‐SiO2 system: A comparison with ternary (CaO‐P2P5‐SiO2) and quaternary glasses (SiO2‐CaO‐P2O5‐Na2O). Journal of Biomedical Materials Research Part A, 2003. 66(1): p. 110-119.
[50] Ciesla, U. and F. Schuth, Ordered mesoporous materials. Microporous and Mesoporous Materials, 1999. 27(2): p. 131-149.
[51] Lopez-Noriega, A., et al., Ordered mesoporous bioactive glasses for bone tissue regeneration. Chemistry of materials, 2006. 18(13): p. 3137-3144.
[52] Brinker, C.J., Porous inorganic materials. Current Opinion in Solid State and Materials Science, 1996. 1(6): p. 798-805.
[53] Kruk, M., M. Jaroniec, and A. Sayari, Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir, 1997. 13(23): p. 6267-6273.
[54] Yan, X., et al., Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone‐Forming Bioactivities. Angewandte Chemie International Edition, 2004. 43(44): p. 5980-5984.
[55] Yan, X., et al., Mesoporous bioactive glasses. I. Synthesis and structural characterization. Journal of Non-Crystalline Solids, 2005. 351(40): p. 3209-3217.
[56] Yan, X., et al., The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials, 2006. 27(18): p. 3396-3403.
[57] Arcos, D., et al., Mesoporous bioactive glasses: mechanical reinforcement by means of a biomimetic process. Acta biomaterialia, 2011. 7(7): p. 2952-2959.
[58] Li, X., et al., Synthesis and characterization of mesoporous CaO–MO–SiO 2–P 2 O 5 (M= Mg, Zn, Cu) bioactive glasses/composites. Journal of Materials Chemistry, 2008. 18(34): p. 4103-4109.
[59] Melo, L.G., et al., Bone healing in surgically created defects treated with either bioactive glass particles, a calcium sulfate barrier, or a combination of both materials. Clinical Oral Implants Research, 2005. 16(6): p. 683-691.
[60] Yao, A., et al., In Vitro Bioactive Characteristics of Borate‐Based Glasses with Controllable Degradation Behavior. Journal of the American Ceramic Society, 2007. 90(1): p. 303-306.
[61] Fu, Q., et al., Bioactive glass scaffolds with controllable degradation rates for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res. A, 2010. 95: p. 164-171.
[62] Jung, S.B. and D.E. Day, Conversion kinetics of silicate, borosilicate, and borate bioactive glasses to hydroxyapatite. Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B-European Journal of Glass Science and Technology Part B, 2009. 50(2): p. 85-88.
[63] LeGeros, R., et al., Fluoride-cation interactions in the formation and stability of apatites. Journal of fluorine chemistry, 1988. 41(1): p. 53-64.
[64] Okuyama, K., Preparation of micro-controlled particles usingaerosol process. Journal of Aerosol Science, 1991. 22: p. S7-S10.
[65] Shih, S.-J. and I.-C. Chien, Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis. Powder Technology, 2013. 237: p. 436-441.
[66] Clement, C.F. and I.J. Ford, Gas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts. Atmospheric Environment, 1999. 33(3): p. 489-499.
[67] Mozafari, M., F. Moztarzadeh, and M. Tahriri, Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO 2–CaO–P 2 O 5 glass in simulated body fluid. Journal of Non-Crystalline Solids, 2010. 356(28): p. 1470-1478.
[68] ASTM F1635-11 Standard Test Method for in vitro Degradation Testing of Hydrolytically Degradable Polymer Resins and Fabricated Forms for Surgical Implants. 2011, ASTM International: West Conshohocken.
[69] Othsuki, C., et al., Compositional Dependence of Bioactivity of Glasses in the System CaO-SiO2-P2O5. Journal of Materials Science Materials in Medicine, 1991. 3(2): p. 119-125.
[70] Saravanapavan, P. and L.L. Hench, Mesoporous calcium silicate glasses. I. Synthesis. Journal of Non-Crystalline Solids, 2003. 318(1): p. 1-13.
[71] Kokubo, T., et al., Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3. Journal of Biomedical Materials Research, 1990. 24(6): p. 721-734.
[72] Jones, J.R., et al., Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. Journal of Materials Science: Materials in Medicine, 2006. 17(11): p. 989-996.
[73] Jones, J. and A. Clare, Bio-glasses: an introduction. 2012: John Wiley & Sons.
[74] Rey, C., et al., Bioactive ceramics: physical chemistry. Comprehensive Biomaterials, 2011. 1: p. 187-221.
[75] Muth, O., C. Schellbach, and M. Froba, Triblock copolymer assisted synthesis of periodic mesoporous organosilicas (PMOs) with large poresElectronic supplementary information (ESI) available: TG/DTA/MS data. See http://www. rsc. org/suppdata/cc/b1/b106636f. Chemical Communications, 2001(19): p. 2032-2033.
[76] Messing, G.L., S.C. Zhang, and G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis. Journal of the American Ceramic Society, 1993. 76(11): p. 2707-2726.
[77] Lefebvre, L., et al., Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Materialia, 2007. 55(10): p. 3305-3313.
[78] Jedlicka, A.B. and A.G. Clare, Chemical durability of commercial silicate glasses. I. Material characterization. Journal of Non-Crystalline Solids, 2001. 281(1): p. 6-24.
[79] O’Donnell, M., et al., Materials characterisation and cytotoxic assessment of strontium-substituted bioactive glasses for bone regeneration. Journal of Materials Chemistry, 2010. 20(40): p. 8934-8941.
[80] Lin, C.-C., L.-C. Huang, and P. Shen, Na2CaSi2O6–P2O5 based bioactive glasses. Part 1: elasticity and structure. Journal of Non-Crystalline Solids, 2005. 351(40): p. 3195-3203.
[81] Jensen, S.S., et al. Comparative Study of Biphasic Calcium Phosphates with Different HA/TCP Ratios in Mandibular Bone Defects. Long-Term Histomorphometric Study in Minipigs. in Key Engineering Materials. 2008: Trans Tech Publ.
[82] Midura, R.J., et al., Calcospherulites isolated from the mineralization front of bone induce the mineralization of type I collagen. Bone, 2007. 41(6): p. 1005-1016.
[83] Ryu, H.-S., et al., An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials, 2002. 23(3): p. 909-914.
[84] Urban, R.M., et al., Increased bone formation using calcium sulfate-calcium phosphate composite graft. Clinical orthopaedics and related research, 2007. 459: p. 110-117.
[85] Tadjoedin, E.S., et al., High concentrations of bioactive glass material (BioGranR) vs. autogenous bone for sinus floor elevation. Clinical Oral Implants Research, 2002. 13(4): p. 428-436.
[86] Hamadouche, M., et al., Long‐term in vivo bioactivity and degradability of bulk sol‐gel bioactive glasses. Journal of Biomedical Materials Research, 2001. 54(4): p. 560-566.
[87] Lukito, D., J. Xue, and J. Wang, In vitro bioactivity assessment of 70 (wt.)% SiO2–30(wt.)%CaO bioactive glasses in simulated body fluid. Materials Letters, 2005. 59(26): p. 3267-3271.

無法下載圖示 全文公開日期 2020/07/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE