簡易檢索 / 詳目顯示

研究生: Mohammad Fahad
Mohammad Fahad
論文名稱: 基於FCS-MPC之單相五階T型換流器的實現及可靠性分析
Implementation and Reliability Analysis of Single-Phase Five-Level T-type Inverter Based on FCS-MPC
指導教授: 林長華
Chang-Hua Lin
口試委員: 陳偉倫
Woei-Luen Chen
張俊興
Chun-Hsing Chan
劉華棟
Hwa-Dong Liu
林長華
Chang-Hua Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 106
外文關鍵詞: Multilevel Inverters
相關次數: 點閱:365下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • This study aims to investigate multilevel inverter structures with FCS-MPC (finite control set model-predictive control). A comparative assessment of common dc-link multilevel inverter topologies is presented to evaluate merits of various topologies with an application-centric approach. Developmental history and working principle of MPC is discussed. Moreover, FSC-MPC operation on a novel isolated SEPIC converter topology is investigated for voltage regulation on an experimental prototype. A reliability analysis methodology of the packed U-cell (PUC5) converter and its fault-tolerant multilevel inverters is described, and the resulting data is evaluated in context of converter performance. In addition, implementation of FCS-MPC on a multilevel inverter is presented towards the goal of voltage tracking. Development of a scaled experimental prototype is described in detail. Design of gate driver units, dc-link capacitance, filter components, bleeder resistors, sensors, EMI capacitors and system configuration is also presented. The results validate the voltage tracking capability of the system and harmonic performance.

    LIST OF FIGURES v LIST OF TABLES vii CHAPTER-1 INTRODUCTION 8 1.1 Introduction 8 1.2 Review of Multilevel Inverter Topologies 10 1.3 Traditional modulation strategies for multilevel inverters 24 1.3.1 Modulation Strategies 24 1.3.2 Implicit modulator control strategies 26 CHAPTER-2 FINITE CONTROL SET MODEL PREDICTIVE CONTROL (FS-MPC) FOR MULTILEVEL INVERTERS 28 2.1 Introduction to Model Predictive Control 28 2.2 Working principle of MPC 28 CHAPTER-3 IMPLEMENTATION OF FCS-MPC ON A MODIFIED ISOLATED HIGH-GAIN SEPIC CONVERTER 32 3.1 Converter Topology 32 3.1.1 Continuous conduction mode of operation 32 Switch ON operation mode 33 Switch OFF operation mode 33 3.2 Power Loss evaluation 34 3.3 Model Predictive Control implementation 36 3.4 Comparison to previous literature 39 3.5 Hardware Implementation 41 CHAPTER-4 RELIABILIY ANALYSIS OF THE FIVE-LEVEL PACKED U-CELL (PUC-5) MLI WITH ITS FAULT-TOLERANT VARIANTS 46 4.1 Description 46 4.2 PUC-5 topology and its variants 46 4.2.1 FT PUC5 topology 47 4.2.2 MPUC5 topology 47 4.2.3 FT MPUC5 topology 47 4.3 Reliability analysis 49 4.3.1 Failure rate evaluation 50 4.3.2 Switch failure rate 51 4.3.3 Capacitor: 52 4.3.4 Fault Tolerance 53 4.4 Reliability computation 54 CHAPTER-5 IMPLEMENTATION OF FCS-MPC ON A SINGLE-PHASE FIVE-LEVEL T-TYPE TOPOLOGY 62 5.1 Single-phase five-level t-type topology 62 5.2 FCS-MPC on T-type topology 64 5.3 Cost function 68 CHAPTER-6 HARDWARE IMPLEMENTATION 75 6.1 Embedded Controller 75 6.2 Gate Driver Unit 79 6.3 DC-Link capacitances 80 6.4 Output Filter design 81 6.5 Output Filter Capacitor Design 81 6.6 Bleeder resistor selection 81 6.7 Sensors 82 6.8 EMI capacitors 83 6.9 Mosfet 84 6.10 Power and sensor stage 84 6.11 Overall system 84 6.12 Results 85 CHAPTER-7 CONCLUSION AND FUTURE WORK 93 7.1 Discussion and conclusion 93 REFERENCES 95

    [1]H. Wang et al., “Application-Oriented Reliability Testing of Power Electronic Components and Converters,” IEEE Power Electronics Magazine, vol. 9, no. 4, pp. 22–31, Dec. 2022, doi: 10.1109/MPEL.2022.3218244.
    [2]A. Poorfakhraei, M. Narimani, and A. Emadi, “A Review of Multilevel Inverter Topologies in Electric Vehicles: Current Status and Future Trends,” IEEE Open Journal of Power Electronics, vol. 2, pp. 155–170, 2021, doi: 10.1109/OJPEL.2021.3063550.
    [3]F. Guo, T. Yang, A. M. DIab, S. S. Yeoh, S. Bozhko, and P. Wheeler, “An Enhanced Virtual Space Vector Modulation Scheme of Three-Level NPC Converters for More-Electric-Aircraft Applications,” IEEE Trans Ind Appl, vol. 57, no. 5, pp. 5239–5251, Sep. 2021, doi: 10.1109/TIA.2021.3085798.
    [4]Y. Zhong, C. Li, and D. Xu, “Structural design of a five-level hybrid active NPC converter for high power density motor drives,” in 2015 IEEE Energy Conversion Congress and Exposition (ECCE), IEEE, Sep. 2015, pp. 4290–4294. doi: 10.1109/ECCE.2015.7310266.
    [5]J. Rodriguez, Jih-Sheng Lai, and Fang Zheng Peng, “Multilevel inverters: a survey of topologies, controls, and applications,” IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 724–738, Aug. 2002, doi: 10.1109/TIE.2002.801052.
    [6]J. Millinger, O. Wallmark, and J. Soulard, “Possibilities and Limitations of Wide Bandgap Transistors in High-Speed Electric Drives,” in 2019 21st European Conference on Power Electronics and Applications (EPE ’19 ECCE Europe), IEEE, Sep. 2019, p. P.1-P.10. doi: 10.23919/EPE.2019.8915447.
    [7]A. Bahrami and M. Narimani, “A New Five-Level T-Type Nested Neutral Point Clamped (T-NNPC) Converter,” IEEE Trans Power Electron, vol. 34, no. 11, pp. 10534–10545, Nov. 2019, doi: 10.1109/TPEL.2019.2898419.
    [8]P. Barbosa, P. Steimer, J. Steinke, M. Winkelnkemper, and N. Celanovic, “Active-neutral-point-clamped (ANPC) multilevel converter technology,” in 2005 European Conference on Power Electronics and Applications, IEEE, 2005, pp. 10 pp.-P.10. doi: 10.1109/EPE.2005.219713.
    [9]T. B. Soeiro, R. Carballo, J. Moia, G. O. Garcia, and M. L. Heldwein, “Three-phase five-level active-neutral-point-clamped converters for medium voltage applications,” in 2013 Brazilian Power Electronics Conference, IEEE, Oct. 2013, pp. 85–91. doi: 10.1109/COBEP.2013.6785099.
    [10]J. Korhonen, A. Sankala, J.-P. Strom, and P. Silventoinen, “Hybrid five-level T-type inverter,” in IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, IEEE, Oct. 2014, pp. 1506–1511. doi: 10.1109/IECON.2014.7048701.
    [11]H. Wang, L. Kou, Y.-F. Liu, and P. C. Sen, “A New Six-Switch Five-Level Active Neutral Point Clamped Inverter for PV Applications,” IEEE Trans Power Electron, vol. 32, no. 9, pp. 6700–6715, Sep. 2017, doi: 10.1109/TPEL.2016.2623568.
    [12]H. Wang, L. Kou, Y.-F. Liu, and P. C. Sen, “A Seven-Switch Five-Level Active-Neutral-Point-Clamped Converter and Its Optimal Modulation Strategy,” IEEE Trans Power Electron, vol. 32, no. 7, pp. 5146–5161, Jul. 2017, doi: 10.1109/TPEL.2016.2614265.
    [13]Y. P. Siwakoti, A. Palanisamy, A. Mahajan, S. Liese, T. Long, and F. Blaabjerg, “Analysis and Design of a Novel Six-Switch Five-Level Active Boost Neutral Point Clamped Inverter,” IEEE Transactions on Industrial Electronics, vol. 67, no. 12, pp. 10485–10496, Dec. 2020, doi: 10.1109/TIE.2019.2957712.
    [14]E. Burguete, J. Lopez, and M. Zabaleta, “New Five-Level Active Neutral-Point-Clamped Converter,” IEEE Trans Ind Appl, vol. 51, no. 1, pp. 440–447, Jan. 2015, doi: 10.1109/TIA.2014.2334737.
    [15]L. M. K. Johny and J. Mathew, “A Three-Phase Five-Level Active-Neutral-Point-Clamped Z-Source Inverter,” in 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), IEEE, Dec. 2020, pp. 1–6. doi: 10.1109/PEDES49360.2020.9379376.
    [16]W. Zhang, H. Wang, X. Zhu, H. Wang, X. Deng, and X. Yue, “A Three-Phase Five-Level Inverter With High DC Voltage Utilization and Self-Balancing Capacity of Floating Capacitor,” IEEE Trans Power Electron, vol. 37, no. 9, pp. 10609–10619, Sep. 2022, doi: 10.1109/TPEL.2022.3163158.
    [17]Y. P. Siwakoti, “A new six-switch five-level boost-active neutral point clamped (5L-Boost-ANPC) inverter,” in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), IEEE, Mar. 2018, pp. 2424–2430. doi: 10.1109/APEC.2018.8341356.
    [18]S. Xu, J. Zhang, and X. Hu, “Model Predictive Control for a Hybrid Multilevel Converter With Different Voltage Ratios,” IEEE J Emerg Sel Top Power Electron, vol. 7, no. 2, pp. 922–935, Jun. 2019, doi: 10.1109/JESTPE.2019.2897355.
    [19]V. Dargahi, K. A. Corzine, J. H. Enslin, J. Rodriguez, and F. Blaabjerg, “Improved active-neutral-point-clamped (I-ANPC) multilevel converter: Fundamental circuit topology, innovative modulation technique, and experimental validation,” in 2018 IEEE Power and Energy Conference at Illinois (PECI), IEEE, Feb. 2018, pp. 1–8. doi: 10.1109/PECI.2018.8334994.
    [20]R. Naderi, A. K. Sadigh, and K. M. Smedley, “Dual Flying Capacitor Active-Neutral-Point-Clamped Multilevel Converter,” IEEE Trans Power Electron, vol. 31, no. 9, pp. 6476–6484, Sep. 2016, doi: 10.1109/TPEL.2015.2501401.
    [21]A. Karthik and U. Loganathan, “A Reduced Component Count Five-Level Inverter Topology for High Reliability Electric Drives,” IEEE Trans Power Electron, vol. 35, no. 1, pp. 725–732, Jan. 2020, doi: 10.1109/TPEL.2019.2913821.
    [22]A. Nabae, I. Takahashi, and H. Akagi, “A New Neutral-Point-Clamped PWM Inverter,” IEEE Trans Ind Appl, vol. IA-17, no. 5, pp. 518–523, Sep. 1981, doi: 10.1109/TIA.1981.4503992.
    [23]T. A. Meynard and H. Foch, “Multi-Level Choppers for High Voltage Applications,” EPE Journal, vol. 2, no. 1, pp. 45–50, Jan. 1992, doi: 10.1080/09398368.1992.11463285.
    [24]W. Sheng and Q. Ge, “A Novel Seven-Level ANPC Converter Topology and Its Commutating Strategies,” IEEE Trans Power Electron, vol. 33, no. 9, pp. 7496–7509, Sep. 2018, doi: 10.1109/TPEL.2017.2772885.
    [25]Y. P. Siwakoti, A. Mahajan, D. J. Rogers, and F. Blaabjerg, “A Novel Seven-Level Active Neutral-Point-Clamped Converter With Reduced Active Switching Devices and DC-Link Voltage,” IEEE Trans Power Electron, vol. 34, no. 11, pp. 10492–10508, Nov. 2019, doi: 10.1109/TPEL.2019.2897061.
    [26]S. S. Lee, C. S. Lim, and K.-B. Lee, “Novel Active-Neutral-Point-Clamped Inverters With Improved Voltage-Boosting Capability,” IEEE Trans Power Electron, vol. 35, no. 6, pp. 5978–5986, Jun. 2020, doi: 10.1109/TPEL.2019.2951382.
    [27]M. Saeedifard, P. M. Barbosa, and P. K. Steimer, “Operation and Control of a Hybrid Seven-Level Converter,” IEEE Trans Power Electron, vol. 27, no. 2, pp. 652–660, Feb. 2012, doi: 10.1109/TPEL.2011.2158114.
    [28]S. R. Pulikanti, G. S. Konstantinou, and V. G. Agelidis, “Seven-level cascaded ANPC-based multilevel converter,” in 2010 IEEE Energy Conversion Congress and Exposition, IEEE, Sep. 2010, pp. 4575–4582. doi: 10.1109/ECCE.2010.5618414.
    [29]H. Yu, B. Chen, W. Yao, and Z. Lu, “Hybrid Seven-Level Converter Based on T-Type Converter and H-Bridge Cascaded Under SPWM and SVM,” IEEE Trans Power Electron, vol. 33, no. 1, pp. 689–702, Jan. 2018, doi: 10.1109/TPEL.2017.2664068.
    [30]T. T. Davis and A. Dey, “Nine level T-type neutral point clamped voltage source inverter for induction motor drive,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, IEEE, Oct. 2017, pp. 1331–1336. doi: 10.1109/IECON.2017.8216226.
    [31]I. Harbi, M. Ahmed, J. Rodriguez, R. Kennel, and M. Abdelrahem, “A Nine-Level T-Type Converter for Grid-Connected Distributed Generation,” IEEE J Emerg Sel Top Power Electron, vol. 10, no. 5, pp. 5904–5920, Oct. 2022, doi: 10.1109/JESTPE.2022.3170731.
    [32]M. D. Siddique, A. Iqbal, J. Sathik Mohamed Ali, S. Mekhilef, and D. J. Almakhles, “Design and implementation of a new unity gain nine‐level active neutral point clamped multilevel inverter topology,” IET Power Electronics, vol. 13, no. 14, pp. 3204–3208, Nov. 2020, doi: 10.1049/iet-pel.2020.0437.
    [33]Fang Zheng Peng, “A generalized multilevel inverter topology with self voltage balancing,” IEEE Trans Ind Appl, vol. 37, no. 2, pp. 611–618, 2001, doi: 10.1109/28.913728.
    [34]T. Chaudhuri and A. Rufer, “Modeling and Control of the Cross-Connected Intermediate-Level Voltage Source Inverter,” IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2597–2604, Aug. 2010, doi: 10.1109/TIE.2009.2033486.
    [35]M. Veenstra and A. Rufer, “Control of a Hybrid Asymmetric Multilevel Inverter for Competitive Medium-Voltage Industrial Drives,” IEEE Trans Ind Appl, vol. 41, no. 2, pp. 655–664, Mar. 2005, doi: 10.1109/TIA.2005.844382.
    [36]J. Li, S. Bhattacharya, and A. Q. Huang, “A New Nine-Level Active NPC (ANPC) Converter for Grid Connection of Large Wind Turbines for Distributed Generation,” IEEE Trans Power Electron, vol. 26, no. 3, pp. 961–972, Mar. 2011, doi: 10.1109/TPEL.2010.2093154.
    [37]V. Nair R., A. Rahul S., R. S. Kaarthik, A. Kshirsagar, and K. Gopakumar, “Generation of Higher Number of Voltage Levels by Stacking Inverters of Lower Multilevel Structures With Low Voltage Devices for Drives,” IEEE Trans Power Electron, vol. 32, no. 1, pp. 52–59, Jan. 2017, doi: 10.1109/TPEL.2016.2528286.
    [38]T. Chaudhuri, P. Steimer, and A. Rufer, “Introducing the Common Cross Connected Stage (C3S) for the 5L ANPC multilevel inverter,” in 2008 IEEE Power Electronics Specialists Conference, IEEE, Jun. 2008, pp. 167–173. doi: 10.1109/PESC.2008.4591919.
    [39]S. Pal et al., “A Cascaded Nine-Level Inverter Topology With T-Type and H-Bridge With Increased DC-Bus Utilization,” IEEE Trans Power Electron, vol. 36, no. 1, pp. 285–294, Jan. 2021, doi: 10.1109/TPEL.2020.3002918.
    [40]M. I. Sarwar et al., “A Hybrid Nearest Level Combined with PWM Control Strategy: Analysis and Implementation on Cascaded H-Bridge Multilevel Inverter and its Fault Tolerant Topology,” IEEE Access, 2021, doi: 10.1109/ACCESS.2021.3058136.
    [41]M. Srndovic, A. Zhetessov, T. Alizadeh, Y. L. Familiant, G. Grandi, and A. Ruderman, “Simultaneous Selective Harmonic Elimination and THD Minimization for a Single-Phase Multilevel Inverter with Staircase Modulation,” IEEE Trans Ind Appl, vol. 54, no. 2, pp. 1532–1541, Mar. 2018, doi: 10.1109/TIA.2017.2775178.
    [42]X. Liu, C. Zhang, X. Xing, R. Zhang, T. Liu, and Q. Ren, “A Carrier-Based Low Total Current Ripple Modulation Strategy for Parallel Converters With Leakage Current Attenuation,” IEEE Transactions on Industrial Electronics, vol. 70, no. 4, pp. 3751–3761, Apr. 2023, doi: 10.1109/TIE.2022.3176277.
    [43]M. L. De Klerk and A. K. Saha, “A Comprehensive Review of Advanced Traction Motor Control Techniques Suitable for Electric Vehicle Applications,” IEEE Access, vol. 9, pp. 125080–125108, 2021, doi: 10.1109/ACCESS.2021.3110736.
    [44]J. D. Barros and J. F. Silva, “Optimal Predictive Control of Three-Phase NPC Multilevel Converter for Power Quality Applications,” IEEE Transactions on Industrial Electronics, vol. 55, no. 10, pp. 3670–3681, Oct. 2008, doi: 10.1109/TIE.2008.928156.
    [45]P. Cortes, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and J. Rodriguez, “Predictive Control in Power Electronics and Drives,” IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4312–4324, Dec. 2008, doi: 10.1109/TIE.2008.2007480.
    [46]V. K. Singh, R. N. Tripathi, and T. Hanamoto, “Implementation Strategy for Resource Optimization of FPGA-Based Adaptive Finite Control Set-MPC Using XSG for a VSI System,” IEEE J Emerg Sel Top Power Electron, vol. 9, no. 2, pp. 2066–2078, Apr. 2021, doi: 10.1109/JESTPE.2020.2999267.
    [47]S. Effler, A. Kelly, M. Halton, and K. Rinne, “Automated optimization of generalized model predictive control for DC-DC converters,” in 2008 IEEE Power Electronics Specialists Conference, IEEE, Jun. 2008, pp. 134–139. doi: 10.1109/PESC.2008.4591913.
    [48]R. Kennel, A. Linder, and M. Linke, “Generalized predictive control (GPC)-ready for use in drive applications?,” in 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230), IEEE, pp. 1839–1844. doi: 10.1109/PESC.2001.954389.
    [49]J. Rodriguez and P. Cortes, Predictive Control of Power Converters and Electrical Drives. Wiley, 2012. doi: 10.1002/9781119941446.
    [50]N. Guler, S. Biricik, S. Bayhan, and H. Komurcugil, “Model Predictive Control of DC–DC SEPIC Converters With Autotuning Weighting Factor,” IEEE Transactions on Industrial Electronics, vol. 68, no. 10, pp. 9433–9443, Oct. 2021, doi: 10.1109/TIE.2020.3026301.
    [51]H. Vahedi and K. Al-Haddad, “PUC5 inverter - a promising topology for single-phase and three-phase applications,” in IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, IEEE, Oct. 2016, pp. 6522–6527. doi: 10.1109/IECON.2016.7793810.
    [52]D. Kumar, R. K. Nema, and S. Gupta, “Investigation of Fault-Tolerant Capabilities of Some Recent Multilevel Inverter Topologies,” International Journal of Electronics, p. 00207217.2020.1870752, Dec. 2020, doi: 10.1080/00207217.2020.1870752.
    [53]M. Asif et al., “A Robust Multilevel Inverter Topology for Operation under Fault Conditions,” Electronics (Basel), vol. 10, no. 24, p. 3099, Dec. 2021, doi: 10.3390/electronics10243099.
    [54]“MIL-HDBK-217 F RELIABILITY PREDICTION ELECTRONIC.” http://everyspec.com/MIL-HDBK/MIL-HDBK-0200-0299/MIL-HDBK-217F_14591/ (accessed Oct. 01, 2020).
    [55]S. Kouro et al., “Recent advances and industrial applications of multilevel converters,” IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2553–2580, Aug. 2010, doi: 10.1109/TIE.2010.2049719.
    [56]I. Harbi et al., “Model Predictive Control of Multilevel Inverters: Challenges, Recent Advances, and Trends,” IEEE Trans Power Electron, pp. 1–24, 2023, doi: 10.1109/TPEL.2023.3288499.
    [57]P. Karamanakos and T. Geyer, “Guidelines for the Design of Finite Control Set Model Predictive Controllers,” IEEE Trans Power Electron, vol. 35, no. 7, pp. 7434–7450, Jul. 2020, doi: 10.1109/TPEL.2019.2954357.
    [58]M. Aly, E. M. Ahmed, M. Orabi, and M. Shoyama, “An enhanced PWM method for loss balancing of five level T-type inverter in PV systems,” in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), IEEE, Mar. 2018, pp. 2530–2535. doi: 10.1109/APEC.2018.8341373.
    [59]C. Zheng, T. Dragicevic, Z. Zhang, J. Rodriguez, and F. Blaabjerg, “Model Predictive Control of LC -Filtered Voltage Source Inverters With Optimal Switching Sequence,” IEEE Trans Power Electron, vol. 36, no. 3, pp. 3422–3436, Mar. 2021, doi: 10.1109/TPEL.2020.3015540.
    [60]M. Novak, V. Ferreira, M. Andresen, T. Dragicevic, F. Blaabjerg, and M. Liserre, “FS-MPC Based Thermal Stress Balancing and Reliability Analysis for NPC Converters,” IEEE Open Journal of Power Electronics, vol. 2, pp. 124–137, 2021, doi: 10.1109/OJPEL.2021.3057577.
    [61]C. Zheng, T. Dragicevic, Z. Zhang, J. Rodriguez, and F. Blaabjerg, “Model Predictive Control of LC -Filtered Voltage Source Inverters With Optimal Switching Sequence,” IEEE Trans Power Electron, vol. 36, no. 3, pp. 3422–3436, Mar. 2021, doi: 10.1109/TPEL.2020.3015540.
    [62]M. Aly, E. M. Ahmed, and M. Shoyama, “An improved model predictive controller for highly reliable grid connected photovoltaic multilevel inverters,” in 2017 IEEE International Telecommunications Energy Conference (INTELEC), IEEE, Oct. 2017, pp. 450–455. doi: 10.1109/INTLEC.2017.8214177.
    [63]M. Aly et al., “Weighting Factorless Sequential Model Predictive Control Method with Fixed Switching Frequency for Five-Level T-type Photovoltaic Inverters,” in IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, IEEE, Oct. 2021, pp. 1–6. doi: 10.1109/IECON48115.2021.9589758.
    [64]L. M. A. Caseiro, A. M. S. Mendes, and S. M. A. Cruz, “Dynamically Weighted Optimal Switching Vector Model Predictive Control of Power Converters,” IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1235–1245, Feb. 2019, doi: 10.1109/TIE.2018.2829689.
    [65]T. Dragicevic and M. Novak, “Weighting Factor Design in Model Predictive Control of Power Electronic Converters: An Artificial Neural Network Approach,” IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 8870–8880, Nov. 2019, doi: 10.1109/TIE.2018.2875660.
    [66]M. Rossi, N. Toscani, M. Mauri, and F. C. Dezza, Introduction to Microcontroller Programming for Power Electronics Control Applications. Boca Raton: CRC Press, 2021. doi: 10.1201/9781003196938.
    [67]“https://www.mouser.com/ProductDetail/Toshiba/TLP250HF?qs=vPP9GyyTAo36bA3qZ3WRFw%3D%3D.”
    [68]“https://www.minmaxpower.com/storage/media/Product-MINMAX/MCWI03/MCWI03_Datasheet.pdf.”
    [69]B. M. Hasaneen and A. A. Elbaset Mohammed, “Design and simulation of DC/DC boost converter,” in 2008 12th International Middle-East Power System Conference, IEEE, Mar. 2008, pp. 335–340. doi: 10.1109/MEPCON.2008.4562340.
    [70]“https://www.allegromicro.com/en/products/sense/current-sensor-ics/zero-to-fifty-amp-integrated-conductor-sensor-ics/acs712.”
    [71]“Implementation of a Modulation Controller,” in Pulse Width Modulation for Power Converters, IEEE, 2009. doi: 10.1109/9780470546284.ch13.
    [72]“https://datasheetspdf.com/pdf-file/1016457/NEC/K2371/1.”
    [73]D. Committee, I. Power, and E. Society, “IEEE Std 519-2014 (Revision of IEEE Std 519-1992),” IEEE Std 519-2014 (Revision of IEEE Std 519-1992), vol. 2014, pp. 1–29, 2014, doi: 10.1109/IEEESTD.2014.6826459.

    無法下載圖示 全文公開日期 2033/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE