簡易檢索 / 詳目顯示

研究生: 薛峰旭
Fong-Hsu Hsueh
論文名稱: 高Ni擔載量的Ni/LaZrCeOx觸媒於乙醇蒸氣重組研究
High Ni loading in Ni/LaZrCeOx catalysts for ethanol steam reforming
指導教授: 林昇佃
Shawn-D Lin
口試委員: 胡哲嘉
Che-Chia Hu
林裕川
Yu-Chuan Lin
余慶聰
Ching-Tsung Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 115
中文關鍵詞: 乙醇蒸氣重組鎳觸媒銅鎳觸媒金屬氧化物
外文關鍵詞: Ethanol steam reforming, Ni catalysts, Cu-Ni catalysts, metal oxide
相關次數: 點閱:316下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氫氣是一種理想的乾淨能源,可以以液體或氣體的形式儲存,並被描述為天然氣的長期替代品。利用使用生質乙醇蒸氣重組製氫,可以使反應產生的溫室氣體CO2為一封閉的碳循環。乙醇蒸氣重組涉及多個複雜反應,為了能提高氫氣生產降低副產物的生成,對於觸媒選擇以及反應條件很重要。本研究第一部分以實驗室先前開發用於中溫甲烷蒸氣重組(SRM)的Ni/LaZrCeOx觸媒為基礎,探討此觸媒作用於乙醇蒸氣重組的影響。研究著重於調控Ni觸媒使其在反應條件下仍然保有Ni-NiO界面,並提高Ni的擔載量以此增加Ni與NiO接觸面,16.2% - 53.5% Ni/LZC具有高反應活性與高氫氣產率,反應後16.2% Ni/LZC比較沒有積碳產生,27.9% - 53.5% Ni/LZC隨著含Ni比例提高,積碳量提高。在部分還原的條件(400℃持溫1小時)下,x% Ni/LZC (x=16.2, 36.6, 53.5)還原程度大約30%,因為Ni沒有被完全還原,乙醇蒸氣重組的反應活性明顯較低,但是甲烷的產率相較於完全還原的觸媒低,而且對水參與反應的相對比例也跟著提高,使得反應後的積碳量降低。
第二部分主要分析含浸第二金屬Cu增進Ni/LZC觸媒的氫氣生成與增加反應活性,因為Cu的加入使得Ni/LZC的還原溫度大幅降低,提高在相同溫度下Ni的還原程度。在反應分析上發現,甲烷生成與Ni的還原程度有關,可以降低還原溫度進行調整,並且在低於250℃氫氣產率明顯提升,在350℃下相較於Ni/LZC觸媒,CuNi/LZC的水煤氣反應趨勢更為明顯,對於產氫更有幫助。


Hydrogen is an ideal energy. It can be stored in liquid or gas form.And it has been described as a long-term alternative energy to natural gas. The process of ethanol steam reforming to produce hydrogen can make the greenhouse gas CO2 be a closed carbon cycle. However, ethanol steam reforming involves multiple complex reactions. In order to increase hydrogen production and reduce by-product formation, catalysts' selection and the conditions of the reaction are important. The first part of this study is based on the Ni/LaZrCeOx catalysts which developed by the laboratory for methane steam reforming (SRM) at intermediate temperature. And it is the investigation of these catalysts for ethanol steam reforming. The research focuses on keeping the Ni and NiO interface under the reduction conditions, and increasing the loading of Ni to increase the contact surface between Ni and NiO. 16.2% - 53.5% Ni/LZC has high reaction activity and high hydrogen yield. 16.2% Ni/LZC has almost no carbon deposition after the reaction. In 27.9% - 53.5% Ni/LZC, when Ni loading is increased, the amount of carbon deposition is increased. In the partial reduction (400 °C for 1 hour) of Ni/LZC, the degree of reduction of x% Ni/LZC (x=16.2, 36.6, 53.5) is about 30%. Because Ni is not completely reduced, the activity of ethanol steam reforming is lower than the completely reduced Ni/LZC. However, the yield of methane is lower than the completely reduced catalysts, and so does the carbon deposition after the reaction.
The second part is focused on the impregnation of the second metal Cu to improve the hydrogen generation and the reaction activity of the Ni/LZC catalyst. Because of the addition of Cu, it greatly reduces the reduction temperature of Ni/LZC and improves the reduction degree of Ni at 400℃ for 1 hour. For ESR analysis, it is found that the methane formation is related to the reduction degree of Ni, which can be adjusted by reducing the reduction temperature. The hydrogen yield is significantly improved below 250°C. Compared with Ni/LZC catalyst at 350 °C, CuNi/LZC catalyst is more obvious in water-gas shift reaction. Therefore, it is more helpful for hydrogen production.

摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第1章 緒論 1.1 前言 1.2 文獻回顧 1.2.1 乙醇蒸氣重組反應 1.2.2 鎳觸媒於乙醇蒸氣重組反應之應用 1.2.3 銅鎳雙金屬觸媒於重組反應之應用 1.3 研究目的 第2章 研究架構與方法 2.1 研究方法 2.2 藥品與儀器設備 2.2.1 藥品 2.2.2 氣體 2.2.3 使用儀器 2.3 觸媒製備 2.3.1 共沉澱法製備Ni/LZC觸媒 2.3.2 含浸Cu以修飾Ni/LZC觸媒 2.4 觸媒特性分析 2.4.1 X光粉末繞射儀(XRD) 2.4.2 程序還原反應(TPR) 2.4.3 比表面積與孔隙測定儀(BET) 2.4.4 熱重分析儀(TGA) 2.4.5 X光吸收光譜(XAS) 2.4.6 乙醇蒸氣重組(Ethanol steam reforming, ESR) 第3章 Ni/LZC觸媒催化乙醇蒸氣重組下的探討 3.1 Ni/LZC觸媒特性分析 3.1.1 觸媒性質鑑定 3.1.2 程序升溫乙醇蒸氣重組反應 3.1.3 Ni/LZC於乙醇蒸氣重組反應後觸媒鑑定 3.2 部分還原Ni/LZC觸媒的乙醇蒸氣重組反應反應特性分析 3.2.1 部分還原Ni/LZC之觸媒特性分析 3.2.2 程序升溫ESR反應 3.3 統整 第4章 含浸銅對Ni/LZC觸媒在乙醇蒸氣重組的影響 4.1 Cu含浸比例對Ni/LZC觸媒性質的影響 4.1.1 觸媒性質鑑定 4.1.2 程序升溫ESR反應 4.1.3 ESR 穩定性測試 4.2 統整 第5章 結論 參考文獻 第6章 附錄 附錄一 36.6% Ni/LZC作用於水煤氣反應模型計算 附錄二 加入甲醇對乙醇蒸氣重組反應的影響 附錄三 Ni/LZC觸媒氫氣吸脫附測試

[1] J. O. Abe, A. P. I. Popoola, E. Ajenifuja, and O. M. Popoola, "Hydrogen energy, economy and storage: review and recommendation, "International journal of hydrogen energy, vol. 44, no. 29, pp. 15072-15086, 2019.
[2] T. N. Veziroglu, "Conversion to hydrogen economy," Energy Procedia, vol. 29, pp. 654-656, 2012.
[3] A. Haryanto, S. Fernando, N. Murali, and S. Adhikari, "Current status of hydrogen production techniques by steam reforming of ethanol: a review," Energy & Fuels, vol. 19, no. 5, pp. 2098-2106, 2005.
[4] F. Mariño, M. Boveri, G. Baronetti, and M. Laborde, "Hydrogen production via catalytic gasification of ethanol. A mechanism proposal over copper–nickel catalysts," International Journal of Hydrogen Energy, vol. 29, no. 1, pp. 67-71, 2004.
[5] S. Freni, " Rh based catalysts for indirect internal reforming ethanol applications in molten carbonate fuel cells,"Journal of Power Sources, vol. 94, no. 1, pp. 14-19, 2001.
[6] P. D. Vaidya, and A. E. Rodrigues, " Insight into steam reforming of ethanol to produce hydrogen for fuel cells,"Chemical Engineering Journal, vol. 117, no. 1, pp. 39-49, 2006.
[7] M. Ni, D. Y. Leung, and M. K. Leung, " A review on reforming bio-ethanol for hydrogen production,"International Journal of Hydrogen Energy, vol. 32, no. 15, pp. 3238-3247, 2007.
[8] S. Ogo, and Y. Sekine, "Recent progress in ethanol steam reforming using non-noble transition metal catalysts: A review," Fuel processing technology, vol. 199, pp.106238, 2020.
[9] D. Zanchet, J. B. O. Santos, S. Damyanova, J. M. R. Gallo, and J. M. C. Bueno, "Toward understanding metal-catalyzed ethanol reforming," ACS Catalysis, vol. 5, no. 6, pp. 3841-3863, 2015.
[10] T. A. Le, M. S. Kim, S. H. Lee, T. W. Kim, and E. D. Park, "CO and CO2 methanation over supported Ni catalysts," Catalysis Today, vol. 293, pp. 89-96, 2017.
[11] S. Takenaka, T. Shimizu, and K. Otsuka, "Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts," International Journal of Hydrogen Energy, vol. 29, no. 10, pp. 1065-1073, 2004.
[12] L. V. Mattos, G. Jacobs, B. H. Davis, and F. B. Noronha, "Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation," Chemical reviews, vol. 112, no. 7, pp. 4094-4123, 2012.
[13] A. E. Galetti, M. N. Barroso, M. F. Gomez, L. A. Arrua, A. Monzón, and M. C. Abello, "Promotion of Ni/MgAl2O4 catalysts with rare earths for the ethanol steam reforming reaction," Catalysis letters, vol. 142, no. 12, pp. 1461-1469, 2012.
[14] A. M. Gadalla, and B. Bower, "The role of catalyst support on the activity of nickel for reforming methane with CO2,"Chemical Engineering Science, vol. 43, no. 11, pp. 3049-3062, 1988.
[15] F. Aupretre, C. Descorme, D. Duprez, D. Casanave, and D. Uzio, "Ethanol steam reforming over MgxNi1− xAl2O3 spinel oxide-supported Rh catalysts," Journal of Catalysis, vol. 233, no. 2, pp. 464-477, 2005.
[16] A. N. Fatsikostas, and X. E. Verykios, "Reaction network of steam reforming of ethanol over Ni-based catalysts," Journal of catalysis, vol. 225, no. 2, pp. 439-452, 2004.
[17] A. N. Fatsikostas, D. I. Kondarides, and X. E. Verykios, "Production of hydrogen for fuel cells by reformation of biomass-derived ethanol," Catalysis Today, vol. 75, no. 1-4, pp. 145-155, 2002.
[18] J. W. C. Liberatori, R. U. Ribeiro, D. Zanchet, F. B. Noronha, and J. M. C. Bueno, "Steam reforming of ethanol on supported nickel catalysts," Applied Catalysis A, vol. 327, no. 2, pp. 197-204, 2007.
[19] K. Wang, B. Dou, B. Jiang, Y. Song, C. Zhang, Q. Zhang, H. Chen, and Y. Xu, "Renewable hydrogen production from chemical looping steam reforming of ethanol using xCeNi/SBA-15 oxygen carriers in a fixed-bed reactor," International Journal of Hydrogen Energy, vol. 41, no. 30, pp. 12899-12909, 2016.
[20] J. Paier, C. Penschke, & J. Sauer, "Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment," Chemical reviews, vol. 113, no. 6, pp. 3949-3985, 2013.
[21] R. J. Gorte, "Ceria in catalysis: From automotive applications to the water–gas shift reaction," AIChE journal, vol. 56, no. 5, pp. 1126-1135, 2010.
[22] D. Li, L. Zen, X. Li, X. Wang, H. Ma, S. Assabumrungrat, and J. Gong, "Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation," Applied Catalysis B: Environmental, vol. 176, pp. 532-541, 2015.
[23] R. Dębek, M. E. Galvez, F. Launay, M. Motak, T. Grzybek, and P. Da Costa, "Low temperature dry methane reforming over Ce, Zr and CeZr promoted Ni–Mg–Al hydrotalcite-derived catalysts," International Journal of Hydrogen Energy, vol. 41, no. 27, pp. 11616-11623, 2016.
[24] M. Yousefpour, "Synthesis and characterization of Zr-promoted Ni-Co bimetallic catalyst supported OMC and investigation of its catalytic performance in steam reforming of ethanol," Journal of Hydrogen Energy, vol. 43, no. 14, pp. 7020-7037, 2018.
[25] A. L. Alberton, M. M. Souza, and M. Schmal, "Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts," Catalysis Today, vol. 123, no. 1-4, pp. 257-264, 2007.
[26] F. J. Marino, E. G. Cerrella, S. Duhalde, M. Jobbagy, and M. A. Laborde, "Hydrogen from steam reforming of ethanol. Characterization and performance of copper-nickel supported catalysts," International Journal of Hydrogen Energy, vol. 23, no. 12, pp. 1095-1101, 1998.
[27] 陳立鈞, "銅鎳雙金屬觸媒結構成份對乙醇蒸氣重組反應的影響," 博士, 化學工程系, 國立臺灣科技大學, 台北市, 2012.
[28] L. C. Chen, and S. D. Lin, "The ethanol steam reforming over Cu-Ni/SiO2 catalysts: Effect of Cu/Ni ratio," Applied Catalysis B: Environmental, vol. 106, no. 3-4, pp. 639-649, 2011.
[29] L. C. Chen, H. Cheng, C. W. Chiang, and S. D. Lin, "Sustainable hydrogen production by ethanol steam reforming using a partially reduced copper–nickel oxide catalyst," ChemSusChem, vol. 8, no. 10, pp. 1787-1793, 2015.
[30] 江致威, "銅鎳觸媒應用於中溫甲烷蒸汽重組反應之研究," 碩士, 化學工程系, 國立臺灣科技大學, 台北市, 2014.
[31] 俞承宏, "前處理條件對摻雜改質銅鎳觸媒催化對乙醇蒸氣重組反應的影響," 碩士, 化學工程系, 國立臺灣科技大學, 台北市, 2017.
[32] J. A. Calles, A. Carrero, and A. J. Vizcaíno, "Ce and La modification of mesoporous Cu–Ni/SBA-15 catalysts for hydrogen production through ethanol steam reforming," Microporous and mesoporous materials, vol. 119, no. 1-3, pp. 200-207, 2009.
[33] S. J. Han, J. H. Song, Y. Bang, J. Yoo, S. Park, K. H. Kang, and I. K. Song, "Hydrogen production by steam reforming of ethanol over mesoporous Cu–Ni–Al2O3–ZrO2 xerogel catalysts," International Journal of Hydrogen Energy, vol. 41, no. 4, pp. 2554-2563, 2016.
[34] F. Chen, Y. Tao, H. Ling, C. Zhou, Z. Liu, J. Huang, and A. Yu, "Ni-Cu bimetallic catalysts on Yttria-stabilized zirconia for hydrogen production from ethanol steam reforming," Fuel, vol. 280, pp. 118612, 2020.
[35] F. Wang, Y. Li, W. Cai, E. Zhan, X. Mu, and W. Shen, "Ethanol steam reforming over Ni and Ni–Cu catalysts," Catalysis Today, vol. 146, no. 1-2, pp. 31-36, 2009.
[36] 林力雋, "混合氧化物擔載鎳觸媒應用於中溫甲烷蒸汽重組反應," 碩士, 化學工程系, 國立臺灣科技大學, 台北市, 2016.
[37] Z. Lin, N. Li, Z. Chen, and P. Fu, "The effect of Ni doping concentration on the gas sensing properties of Ni doped SnO2," Sensors and Actuators B: Chemical, vol. 239, pp. 501-510, 2017.
[38] 余登立, "鑭鋯鈰缺陷螢石結構載體擔載鎳鈷觸媒 應用於中溫甲烷重組反應," 碩士, 化學工程系, 國立臺灣科技大學, 台北市, 2019.
[39] D. Srinivas, C. V. V. Satyanarayana, H. S. Potdar, and P. Ratnasamy, "Structural studies on NiO-CeO2-ZrO2 catalysts for steam reforming of ethanol," Applied Catalysis A: General, vol. 246, no. 2, pp. 323-334, 2003.
[40] L. Bednarczuk, P. R. de la Piscina, and N. Homs, "Efficient CO2-regeneration of Ni/Y2O3La2O3ZrO2 systems used in the ethanol steam reforming for hydrogen production," International Journal of Hydrogen Energy, vol. 41, no. 43, pp. 19509-19517, 2016.
[41] J. Ma, N. Sun, X. Zhang, N. Zhao, F. Xiao, W. Wei, and Y. Sun, "A short review of catalysis for CO2 conversion," Catalysis Today, vol. 148, no. 3-4, pp. 221-231, 2009.
[42] Jichang Lu, Xiaofeng Li, Sufang He, Caiyun Han, Gengping Wan, Yanqiu Lei, Ran Chen, "Hydrogen production via methanol steam reforming over Ni-based catalysts: Influences of Lanthanum (La) addition and supports," International Journal of Hydrogen Energy, vol. 42, no. 6, pp. 3647-3657, 2017.
[43] V. K. Paidi, D. L. Brewe, J. W. Freeland, C. A. Roberts, and J. van Lierop, "Role of Ce 4 f hybridization in the origin of magnetism in nanoceria," Physical Review B, vol. 99, no. 18, pp. 180403, 2019.
[44] J. Pakarinen, L. He, A. R. Hassan, Y. Wang, M. Gupta, A. El-Azab, and T. R. Allen, "Annealing-induced lattice recovery in room-temperature xenon irradiated CeO2: X-ray diffraction and electron energy loss spectroscopy experiments," Journal of Materials Research, vol. 30, no. 9, pp. 1555-1562, 2015.
[45] L. A. J. Garvie, and P. R. Buseck, "Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy," Journal of Physics and Chemistry of solids, vol. 60, no. 12, pp. 1943-1947, 1999.
[46] A. Sharma, M. Varshney, H. J. Shin, Y. J. Park, M. G. Kim, T. K. Ha, K. H. Chae, and S. Gautam, "Electronic structure study of Ce 1− x A x O 2 (A= Zr & Hf) nanoparticles: NEXAFS and EXAFS investigations," Physical Chemistry Chemical Physics, vol. 16, no. 37, pp. 19909-19916, 2014.
[47] C. L. Melcher, S. Friedrich, M. A. Spurrier, P. Szupryczynski, and R. Nutt, "Cerium oxidation state in LSO: Ce scintillators," In IEEE Symposium Conference Record Nuclear Science, vol. 1, pp. 3245-248, 2004.
[48] P. Biswas, and D. Kunzru, "Steam reforming of ethanol for production of hydrogen over Ni/CeO2–ZrO2 catalyst: effect of support and metal loading," International Journal of Hydrogen Energy, vol. 32, no. 8, pp. 969-980, 2007.
[49] C. H. Bartholomew, R. B. Pannell, and J. L. Butler, "Support and crystallite size effects in CO hydrogenation on nickel," Journal of Catalysis, vol. 65, no. 2, pp. 335-347, 1980.
[50] 洪晟耀, "應用於烷類重組製氫的低積碳潛勢鎳觸媒研究," 碩士, 化學工程系, 國立臺灣科技大學, 台北市, 2021.
[51] D. L. Trimm, "Catalysts for the control of coking during steam reforming," Catalysis today, vol. 49, no. 1-3, pp. 3-10, 1999.
[52] Y. C. Sharma, A. Kumar, R. Prasad, and S. N. Upadhyay, "Ethanol steam reforming for hydrogen production: Latest and effective catalyst modification strategies to minimize carbonaceous deactivation," Renewable and Sustainable Energy Reviews, vol. 74, pp. 89-103, 2017.
[53] I. P. Hernández, Y. Gochi-Ponce, J. C. Larios, and A. M. Fernández, "Steam reforming of ethanol over nickel-tungsten catalyst," International journal of hydrogen energy, vol. 35, no. 21, pp. 12098-12104, 2010.
[54] C. Pizzolitto, F. Menegazzo, E. Ghedini, G. Innocenti, A. Di Michele, G. Cruciani, and M. Signoretto, , "Increase of ceria redox ability by lanthanum addition on Ni based catalysts for hydrogen production," ACS Sustainable Chemistry & Engineering, vol. 6, no. 11, pp. 13867-13876, 2018.
[55] A. Di Michele, A. Dell'Angelo, A. Tripodi, E. Bahadori, F. Sanchez, D. Motta, and G. Ramis, "Steam reforming of ethanol over Ni/MgAl2O4 catalysts," International Journal of Hydrogen Energy, vol. 44, no. 2, pp. 952-964, 2019.
[56] Y. Yang, J. Ma, and F. Wu, "Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst," International Journal of Hydrogen Energy, vol. 31, no. 7, pp. 877-882, 2006.
[57] J. Bussi, M. Musso, A. Quevedo, R. Faccio, and M. Romero, "Structural and catalytic stability assessment of Ni-La-Sn ternary mixed oxides for hydrogen production by steam reforming of ethanol," Catalysis Today, vol. 296, pp. 154-162, 2017.
[58] H. Muroyama, R. Nakase, T. Matsui, and K. Eguchi, "Ethanol steam reforming over Ni-based spinel oxide," International Journal of Hydrogen Energy, vol. 35, no. 4, pp. 1575-1581, 2010.
[59] J. Y. Liu, C. C. Lee, C. H. Wang, C. T. Yeh, and C. B. Wang, "Application of nickel–lanthanum composite oxide on the steam reforming of ethanol to produce hydrogen," International Journal of Hydrogen Energy, vol. 35, no. 9, pp. 4069-4075, 2010.
[60] J. H. Song, S. J. Han, J. Yoo, S. Park, D. H. Kim, and I. K. Song, "Hydrogen production by steam reforming of ethanol over Ni–X/Al2O3–ZrO2 (X= Mg, Ca, Sr, and Ba) xerogel catalysts: Effect of alkaline earth metal addition," Journal of Molecular Catalysis A: Chemical, vol. 415, pp. 151-159, 2016.
[61] M. A. Goula, A. A. Lemonidou, and A. M. Efstathiou, "Characterization of Carbonaceous Species Formed during Reforming of CH4with CO2over Ni/CaO–Al2O3Catalysts Studied by Various Transient Techniques," Journal of Catalysis, vol. 161, no. 2, pp. 626-640, 1996.
[62] W. J. Cai, L. P. Qian, B. Yue, and H. Y. He, "Rh doping effect on coking resistance of Ni/SBA-15 catalysts in dry reforming of methane," Chinese Chemical Letters, vol. 25, no. 11, pp. 1411-1415, 2014.
[63] T. Wang, H. Ma, L. Zeng, D. Li, H. Tian, S. Xiao, and J. Gong, "Highly loaded Ni-based catalysts for low temperature ethanol steam reforming," Nanoscale, vol. 8, no. 19, pp. 10177-10187, 2016.
[64] E. Ruckenstein, and Y. H. Hu, "Role of Support in CO2 Reforming of CH4 to Syngas over Ni Catalysts," Journal of Catalysis, vol. 162, no. 2, pp. 230-238, 1996.
[65] Z. Wang, X. M. Cao, J. Zhu, and P. Hu, "Activity and coke formation of nickel and nickel carbide in dry reforming: a deactivation scheme from density functional theory," Journal of catalysis, vol. 311, pp. 469-480, 2014.
[66] V. C. H. Kroll, H. M. Swaan, S. Lacombe, and C. Mirodatos, "Methane Reforming Reaction with Carbon Dioxide over Ni/SiO2 Catalyst: II. A Mechanistic Study," Journal of catalysis, vol. 164, no. 2, pp. 387-398, 1996.
[67] V. C. H. Kroll, H. M. Swaan, and C. Mirodatos, "Methane reforming reaction with carbon dioxide over Ni/SiO2 Catalyst: I. Deactivation studies," Journal of Catalysis, vol. 161, no. 1, pp. 409-422, 1996.
[68] H. Song, and U. S. Ozkan, "Ethanol steam reforming over Co-based catalysts: role of oxygen mobility," Journal of Catalysis, vol. 261, no. 1, pp. 66-74, 2009.
[69] F. Mariño, G. Baronetti, M. Jobbagy, and M. Laborde, "Cu-Ni-K/γ-Al2O3 supported catalysts for ethanol steam reforming: Formation of hydrotalcite-type compounds as a result of metal–support interaction," Applied Catalysis A: General, vol. 238, no. 1, pp. 41-54, 2003.
[70] F. Mariño, M. Boveri, G. Baronetti, and M. Laborde, "Hydrogen production via catalytic gasification of ethanol. A mechanism proposal over copper–nickel catalysts," International Journal of Hydrogen Energy, vol. 29, no. 1, pp. 67-71, 2004.
[71] I. Gandarias, J. Requies, P. L. Arias, U. Armbruster, and A. Martin, "Liquid-phase glycerol hydrogenolysis by formic acid over Ni–Cu/Al2O3 catalysts," Journal of Catalysis, vol. 290, pp. 79-89, 2012.
[72] A. J. Vizcaíno, A. Carrero, and J. A. Calles, "Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts," International Journal of Hydrogen Energy, vol. 32, no. 10-11, pp. 1450-1461, 2007.
[73] J. Bian, M. Xiao, S. Wang, Y. Lu, and Y. Meng, "Direct synthesis of DMC from CH3OH and CO2 over V-doped Cu–Ni/AC catalysts," Catalysis Communications, vol. 10, no. 8, pp. 1142-1145, 2009.
[74] G. R. Rao, B. G. Mishra, and H. R. Sahu, "Synthesis of CuO, Cu and CuNi alloy particles by solution combustion using carbohydrazide and N-tertiarybutoxy-carbonylpiperazine fuels," Materials letters, vol. 58, no. 27-28, pp. 3523-3527, 2004.
[75] H. L. Niu, Q. W. Chen, Y. S. Lin, Y. S. Jia, H. F Zhu, and M. Ning, "Hydrothermal formation of magnetic Ni–Cu alloy nanocrystallites at low temperatures," Nanotechnology, vol. 15, no. 8, pp. 1054, 2004.
[76] Y. Li, Q. Fu, and M. Flytzani-Stephanopoulos, "Low-temperature water-gas shift reaction over Cu-and Ni-loaded cerium oxide catalysts," Applied Catalysis B: Environmental, vol. 27, no. 3, pp. 179-191, 2000.
[77] J. A. Rodriguez, P. Liu, X. Wang, W. Wen, J. Hanson, J. Hrbek, and J. Evans, "Water-gas shift activity of Cu surfaces and Cu nanoparticles supported on metal oxides," Catalysis today, vol. 143, no. 1-2, pp. 45-50, 2009.

QR CODE