簡易檢索 / 詳目顯示

研究生: 賴季暉
Chi-hui Lai
論文名稱: 具二次諧波抑制之人工合成傳輸線及其六埠調變器之應用
A Study on a Artificial Transmission Line with Second Harmonic Suppression and its Application to Six-port Modulator
指導教授: 馬自莊
Tzyh-ghuang Ma
口試委員: 陳士元
Shih-yuan Chen
曾昭雄
Chao-hsiung Tseng
王蒼容
Chun-Long Wang
廖文照
Wen-jiao Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 116
中文關鍵詞: 人工合成傳輸線諧波抑制六埠網路反射型式調變器誤差向量振幅
外文關鍵詞: artificial transmission line, harmonic suppression, six-port junction, reflection type modulator, EVM
相關次數: 點閱:381下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一款具有近似橢圓函數低通響應之新型人工合成傳輸線。此人工合成傳輸線乃利用準集總微帶元件及其不連續效應合成,藉以產生慢波特性,縮小電路尺寸。該結構可合成各種不同特徵阻抗與電氣長度之微帶傳輸線,並可有效地抑制二次諧波。本論文詳盡討論此人工合成傳輸線之設計理念、電路架構、等效集總電路模型、以及模擬與量測結果。
本論文將此新提出之人工合成傳輸線應用於微波元件之微小化設計,包括:威爾金森功率分歧器、直交分合波器、鼠競耦合器、以及六埠網路。該創新設計均可在保持原有傳輸線特性和元件效能之前提下,有效降低電路面積。其模擬與量測數據皆有良好之穩合。
此外,本論文亦利用六埠網路整合實現一款2.4 GHz頻段之反射型式調變器。該調變器乃利用不同的終端負載造成相位差,達成正交相移鍵調變。在電路設計中,吾人使用冷偏壓之場效電晶體作為開關,以實現六埠網路之開路或短路負載。實驗中,該調變器可將資料傳送速率提高至每秒8百萬位元,其均方根誤差向量振幅在4.2 % 附近。


A novel slow-wave artificial transmission line with approximate elliptic function lowpass response is proposed in this thesis. The proposed artificial transmission line is capable of synthesizing microstrip lines with a variety of characteristic impedances and electrical lengths. Additional harmonic suppression capability is introduced to the artificial lines as well. The design concept, circuit geometry, equivalent lumped model and the simulated and measured results are carefully investigated and discussed.
Miniaturized Wilkinson power divider, quadrature hybrid and rat-race coupler are developed by utilizing the proposed artificial transmission line. The components reveal significant size reduction percentages as compared with conventional designs. In addition, the quadrature hybrid also demonstrates excellent signal suppression ability at the second harmonic frequency. The circuit performances are tabulated and compared with the conventional ones.
By utilizing the newly developed miniaturized Wilkinson power divider and quadrature hybrid, three miniaturized six-port junctions with compact size and second harmonic suppression characteristic are designed. Meanwhile, a miniaturized reflection type modulator, composed of the developed six-port junction and the cold-mode field effect transistors (FETs), is also implemented in this thesis. The modulator is experimentally demonstrated with QPSK modulation of a data rate up to 8 Mbps. The measured root mean square (RMS) error vector magnitudes (EVMs) are ranged around 4.2 %.

摘要 I Abstract III 誌謝 V Contents IX List of Figures XIII List of Tables XIX Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 2 1.3 Contribution 4 1.4 Thesis Organization 5 Chapter 2 Novel Slow-wave Artificial Line with Approximate Elliptic Function Lowpass Response 7 2.1 Introduction 7 2.3 Lumped Equivalent Circuit Model 11 2.4 Simulation and Measurement 12 2.5 Discussion 15 2.6 Summary 16 Chapter 3 Miniaturized Divider and Couplers 31 3.1 Introduction 31 3.2 Miniaturized Wilkinson Power Divider 32 3.2.1 Fundamentals and Circuit Configuration 32 3.2.2 Simulation and measurement 34 3.3 Miniaturized Quadrature Hybrid 35 3.3.1 Fundamentals and Circuit Configuration 35 3.3.2 Simulation and Result 36 3.4 Miniaturized Rat-Race Coupler 37 3.4.1 Fundamentals and Circuit Configuration 37 3.4.2 Simulation and Result 39 3.5 Discussion 40 3.6 Summary 40 Chapter 4 Miniaturized Six-port Junctions and their Applications 61 4.1 Introduction 61 4.2 Design Concept and Circuit Configuration 61 4.3 Simulation and Measurement 64 4.4 Miniaturized Reflection Type Modulator 66 4.4.1 Fundamentals of the QPSK Modulation 66 4.4.2 Fundamentals of the Reflection Type Modulator 67 4.4.3 Extraction of the Cold-mode FET 69 4.4.4 Experimental Results and Verification 70 4.5 Discussion 71 4.6 Summary 72 Chapter 5 Conclusion 103 5.1 Summary 103 5.2 Future Work 104 References 105 作者簡介 111 Appendix A 113

[1] H. Hasegawa, M. Furukawa and H. Yanai, “Properties of microstrip line on Si-SiO2 system,” IEEE Trans. Microwave Theory Tech., vol. MTT-19, no. 11, pp. 869–881, Nov. 1971.
[2] H. Ogawa and T. Itoh, “Slow-wave characteristics of ferromagnetic semiconductor microstrip line,” IEEE Trans. Microwave Theory Tech., vol. MTT-34, no. 12, pp. 1478–1482, Dec. 1986.
[3] S.-M. Wang, C.-H. Chi, M.-Y. Hsieh, and C.-Y. Chang, “Miniaturized spurious passband suppression microstrip filter using meandered parallel coupled lines,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 2, pp. 747–753, Feb. 2005.
[4] Y.-C. Chiang and C.-Y. Chen, “Design of a wide-band lumped-element 3-dB quadrature coupler,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 3, pp. 476–479, Mar. 2001.
[5] A. Sutono, J. Laskar and W.-R. Smith, “Design of miniature multilayer on-package integrated image-reject filters,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 1, pp. 156–162, Jan. 2003.
[6] F.-R. Yang, K.-P. Ma, Y. Qian and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 8, pp. 1509–1514, Aug. 1999.
[7] S.-G. Mao, M.-S. Wu, Y.-Z. Chueh and C.-H. Chen, “Modeling of symmetric composite right/left-handed coplanar waveguides with applications to compact bandpass filters,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 11, pp. 3460–3466, Nov. 2005.
[8] K.-O. Sun, S.-J. Ho, C.-C. Yen and D. van der Weide, “A compact branch-line coupler using discontinuous microstrip lines,” IEEE Microwave Wireless Comp. Lett., vol. 15, no. 8, pp. 519–520, Aug. 2005.
[9] K. W. Eccleston and S. H. M. Ong, “Compact planar microstrip line branch-line and rat-race couplers,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 10, pp. 2119-2125, Oct. 2003.
[10] C.-W. Wang, T.-G. Ma and C.-F. Yang, “A new planar artificial transmission line and its applications to a miniaturized butler matrix,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 12, pp. 2792–2801, Dec. 2007.
[11] T.-G. Ma, C.-W. Wang, R.-C. Hua, and J.-W. Tsai, “A modified quasi-Yagi antenna with a new compact microstrip-to-coplanar strip transition using artificial transmission lines,” to appear in IEEE Trans. Antennas Propagat., Sep. 2009.
[12] T.-G. Ma and Y.-T. Cheng, “Miniaturized broadside coupler using coupled slow-wave artificial lines,” Electron. Lett., vol. 45, no. 10, pp. 511–512, May. 2009.
[13] T.-G. Ma and Y.-T. Cheng, “An artificial-transmission-line-based miniaturized Marchand balun with multilayered printed circuit board,” IEEE Microwave Wireless Comp. Lett., submitted for publication.
[14] R. Garg, I. Bahl, P. Bhartia, and K. Gupta, Microstrip Lines and Slotlines, Artech House 2nd Ed., 1996.
[15] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, 2nd ed., John Wiley & Sons, 2001.
[16] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE trans. Comp., Hybrids, Manufact. Technol., vol. 15, no. 4, pp. 483–490, Aug. 1992.
[17] L.-H. Lu, P. Bhattacharya, L.-P. B. Katehi, and G.-E. Ponchak, “X-band and K-band lumped Wilkinson power dividers with a micromachined technology,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, Boston, MA, pp. 287–290, June 11–16, 2000.
[18] M.-C. Scardelletti, G.-E. Ponchak, and T.-M. Weller, “Miniaturized Wilkinson power dividers utilizing capacitive loading,” IEEE Microwave Wireless Comp. Lett., vol. 12, no. 1, pp. 6–8, Jan. 2002.
[19] Y.-J. Ko, J.-Y. Park, and J.-U. Bu, “Fully integrated unequal Wilkinson power divider with EBG CPW,” IEEE Microwave Wireless Comp. Lett., vol. 13, no. 7, pp. 276–278, July. 2003.
[20] J.-S. Lim, S.-W. Lee, C.-S. Kim, D.-A. Nam, and S.-W. Nam, “A 4:1 unequal Wilkinson power divider,” IEEE Microwave Wireless Comp. Lett., vol. 11, no. 3, pp. 124–126, Mar. 2001.
[21] C. Zhou and H. Y. David Yang, “Design considerations of miniaturized least dispersive periodic slow-wave structures,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 2, pp. 467-474, Feb. 2008.
[22] M.-L. Chuang, “Miniaturized ring coupler of arbitrary reduced size,” IEEE Microwave Wireless Comp. Lett., vol. 15, no. 1, pp. 16-18, Jan. 2005.
[23] J. Gu and X. Sun, “Miniaturization and harmonic suppression rat race coupler coupler using C-SCMRC resonators with distributive equivalent circuit,” IEEE Microwave Wireless Comp. Lett., vol. 15, no. 12, pp. 880-882, Dec. 2005.
[24] J.- T. Kuo, J.-S. Wu, and Y.-C. Chiou, “Miniaturized rat race coupler with suppression of spurious passband,” IEEE Microwave Wireless Comp. Lett., vol. 17, no. 1, pp. 46-48, Jan. 2007.
[25] C.-C. Chen and C.-K.C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 6, pp. 1637-1647, Jun. 2004.
[26] D. M. Pozar, Microwave Engineering, 3rd ed. Wiley, 2005.
[27] G. F. Engen, “The six-port reflectometer: an alternative network analyzer,” IEEE Trans. Microwave Theory Tech., vol. MTT-25, no. 12, pp. 1075–1080, Nov. 1977.
[28] S. Bensmida, E. Bergeault, G. I. Abib and B. Huyart, “Power amplifier characterization: an active load-pull system based on six-port reflectometer using complex modulated carrier,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 6, pp. 2707–2712, Jun. 2006.
[29] E. Moldovan, S. O. Tatu, T. Gaman, Ke Wu and R. G. Bosisio, “A New 94 GHz Six Port Collision Avoidance Radar Sensor,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 3, pp. 751-759, Mar. 2004.
[30] S. O. Tatu and T. A. Denidni, “A new beam direction finding circuit based on six-port technology,” IMS-2005 Conf., Long Beach, California, USA, 12–17 Jun. 2005.
[31] S. O. Tatu, K. Wu and T. A. Denidni, “Direction-of-arrival estimation method based on six-port technology,” IEE Proc.-Microw. Antennas Propag., vol. 153, no. 3, Jun. 2006.
[32] X. Xu, R. G. Bosisio and Ke Wu, “Analysis and implementation of six-port sofrware-defined radio receiver platform,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 7, pp. 2937-2943, Jul. 2006.
[33] S. O. Tatu, E. Moldovan, Ke Wu, R. G. Bosisio and T. A. Denidni, “Ka-band analog front-end for software-defined direct conversion receiver,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 9, pp. 2768-2776, Sep. 2005.
[34] H.-S. Lim, W.-K. Kim, J.-W. Yu, H.-C. Park, W.-J. Byum and M.-S. Song, “Compact six-port transceiver for time-division duplex systems,” IEEE Microwave Wireless Comp. Lett., vol. 17, no. 5, pp. 394–396, May 2007.
[35] Y. Zhao, K. Wu, and R. G. Bosisio, “Multi(Six)-port impulse radio for ultra-wideband,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 4, pp. 1707–1712, Apr. 2006.
[36] S. M. Winter, A. Koelpin and R. Weigel, “Six-port receiver analog front-end: multilayer design and system simulation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 3, pp. 254–258, Mar. 2008.
[37] X. Xu, R. G. Bosisio and K. Wu, “A new six-port junction based on substrate integrated waveguide technology,” IEEE Trans Microwave Theory Tech., vol. 53, no. 7, pp. 2267–2273, Jul. 2005.
[38] B. Razavi, RF Microelectronics, Prentice Hall, 1998.
[39] 張鴻埜,「毫米波反射式調變器之研究及其應用」,博士論文,國立台灣大學,台北(2004)
[40] S. D. Kamennopolsky, “Application of GaAs discrete pHEMTs in low cost phase shifters and QPSK modulators,” ETRI J., vol. 26, no. 4, pp. 307–314, Apr. 2006.
[41] D. S. McPherson and S. Lucyszyn, “Vector modulator for W-band software radar techniques,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 8, pp. 1451–1461, Aug. 2001.
[42] A. E. Ashtiani, S.-I. Nam, A. d’Espona, S. Lucyszyn, and I. D. Robertson, “Direct multilevel carrier modulation using millimeter-wave balanced vector modulators,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 2611–2617, Dec. 1998.

QR CODE