簡易檢索 / 詳目顯示

研究生: 林昱翰
Yu-Han Lin
論文名稱: 高導電性過渡性金屬鈮和鉭雙硫屬化 合物之晶體成長與載子傳輸性質研究
Crystal growth and carrier transport properties of transition metal dichalcogenides NbX2 and TaX2 (X=S, Se)
指導教授: 何清華
Ching-Hwa Ho
周宏隆
Hung-Lung Chou
口試委員: 何清華
Ching-Hwa Ho
周宏隆
Hung-Lung Chou
李奎毅
Kuei-Yi Lee
趙良君
Liang-C Chao
薛宏中
Hung-Chung Hsueh
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 94
中文關鍵詞: 過渡性金屬硫屬化合物高導電性二硫化鈮二硒化鈮二硫化鉭
外文關鍵詞: transition metal dichalcogenides, high conductivity, Niobium diselenide, niobium disulfide, tantalum disulfide
相關次數: 點閱:431下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究高導電性過渡性金屬鈮和鉭雙硫屬化合物的晶體成長與載子傳輸性質研究,利用化學氣相傳導法並以碘作為傳導劑成長二硒化鈮 (NbSe2) 、二硫化鈮 (NbS2) 及二硫化鉭 (TaS2) 之高導電性層狀化合物,並對此系列晶體進行晶體結構分析、電性及熱電特性量測之研究及討論。藉由能量色散X射線譜確認成長材料之元素比例與預期成分相符,透過X-Ray晶格繞射及拉曼量測分析NbSe2及TaS2之結構為六方2H堆疊相,而NbS2為六方3R堆疊相。在照光V-I曲線中,NbSe2、NbS2及TaS2在照光前後皆不受光觸發影響;霍爾量測結果皆呈現N型特性,四種材料載子濃度都高達1021 cm-3,皆為高導電度層狀化合物;藉由變溫電阻率的量測中,可以發現三者材料隨溫度變化的電阻率都是呈現出金屬性的溫變行為。熱電量測實驗中,判斷三者材料皆為N型,其中NbSe2有較大的Seebeck係數與較低的電阻率,功率因子在三種材料為最高,在室溫下可得其熱電優值約為0.37,適合發展在熱電元件的應用上。


    This work reports crystal growth and carrier transport properties of high-conductivity transition metals (i.e. niobium and tantalum) dichalcogenides. Niobium diselenide (NbSe2), niobium disulfide (NbS2) and tantalum disulfide (TaS2) are highly conductive layered compounds. We will conduct research and discussion on the analysis of crystal structure, electrical, and thermoelectric characteristics of the series crystals. The single crystals of NbSe2, NbS2 and TaS2 were grown using chemical vapor transport (CVT) method with iodine as the transport agent. The energy dispersive X-ray spectrum confirms that the element ratio of the grown material is consistent with the expected composition. NbSe2 and TaS2 is a hexagonal 2H stacking phase, while NbS2 is a hexagonal 3R phase through X-Ray diffraction and Raman measurement. In the illumination VI curves, NbSe2, NbS2, and TaS2 are not affected by the light before and after the illumination. Hall measurement results show that all samples are N-type materials, and the carrier concentration of the three materials ranges from 1021 cm-3 to 1022 cm-3. All the samples are highly conductive layered compound. Based on the temperature-dependent resistivity, it can be found that the resistivity of the three materials changes to very low as the temperature decreases. So it can be concluded that all samples show the metallic behavior. The thermoelectric measurement also confirms that the three materials are all N-type, the same as the Hall measurement result. Among them, NbSe2 has a higher Seebeck coefficient and a lower resistivity. NbSe2 has the highest power factor and figure of merit (ZT ~0.37) compared to the other materials. It has the potential to be developed in thermoelectric and energy application.

    摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 第二章 晶體成長 2.1 晶體成長方法 2.2 長晶系統配置 2.2.1 封管真空系統 2.2.2 三區獨立長晶爐 2.3 晶體成長流程 2.3.1 石英管清洗 2.3.2 元素比例秤重 2.3.3 晶體化合及成長 第三章 實驗原理與量測系統 3.1 能量色散X射線譜 (EDS) 3.2 X射線光電子能譜儀 (XPS) 3.3 X-ray晶格繞射分析儀 (XRD) 3.4 穿透式電子顯微鏡 (TEM) 3.5 原子力顯微鏡 (AFM) 3.6 拉曼散射光譜 (Raman) 3.7 照光之電壓電流量測 (photo V-I) 3.8 霍爾效應 (Hall Effect) 3.9 四接點電阻率量測 3.10 熱電量測 (Thermoelectric) 第四章 實驗結果與分析 4.1 能量色散X射線譜 4.2 X射線光電子能譜 4.1 X-ray晶格繞射分析 4.2 穿透式電子顯微鏡 4.3 厚度特性分析 4.4 拉曼散射光譜 4.5 照光之電壓電流量測 4.6 霍爾量測 4.7 四接點電阻率量測 4.8 熱電量測 4.8.1 NbSe2熱電特性探討 4.8.2 NbS2熱電特性探討 4.8.3 TaS2熱電特性探討 4.8.4 NbSe2 & NbS2 & TaS2熱電特性比較 第五章 結論 參考文獻

    [1] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat Nanotechnol, vol. 7, no. 11, pp. 699-712, 2012.
    [2] J. A. Wilson, and A. D. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys, vol. 18, no. 73, pp. 193-335, 1969.
    [3] L.-j. Li, Z.-a. Xu, J.-q. Shen, L.-m. Qiu, and Z.-h. Gan, “The effect of a charge-density wave transition on the transport properties of 2H-NbSe2,” J. Phys. Condens. Matter, vol. 17, no. 3, pp. 493-498, 2005.
    [4] Q. Peng, F. Ling, H. Yang, P. Duan, R. Xu, Q. Wang, and Y. Yu, “Boosting potassium storage performance via construction of NbSe2–based misfit layered chalcogenides,” Energy Stor. Mater, vol. 39, pp. 265-270, 2021.
    [5] X. Wang, J. Lin, Y. Zhu, C. Luo, K. Suenaga, C. Cai, and L. Xie, “Chemical vapor deposition of trigonal prismatic NbS2 monolayers and 3R-polytype few-layers,” Nanoscale, vol. 9, no. 43, pp. 16607-16611, 2017.
    [6] Y. Liao, K.-S. Park, P. Singh, W. Li, and J. B. Goodenough, “Reinvestigation of the electrochemical lithium intercalation in 2H- and 3R-NbS2,” J. Power Sources, vol. 245, pp. 27-32, 2014.
    [7] Y. Zhang, L. Yin, J. Chu, T. A. Shifa, J. Xia, F. Wang, Y. Wen, X. Zhan, Z. Wang, and J. He, “Edge-epitaxial growth of 2D NbS2 -WS2 lateral metal-semiconductor heterostructures,” Adv Mater, pp. e1803665, 2018.
    [8] E. Navarro-Moratalla, J. O. Island, S. Manas-Valero, E. Pinilla-Cienfuegos, A. Castellanos-Gomez, J. Quereda, G. Rubio-Bollinger, L. Chirolli, J. A. Silva-Guillen, N. Agrait, G. A. Steele, F. Guinea, H. S. van der Zant, and E. Coronado, “Enhanced superconductivity in atomically thin TaS2,” Nat Commun, vol. 7, pp. 11043, 2016.
    [9] H. Schäfer, Chemical transport reactions: Elsevier, 2016.
    [10] 何清華, “二硫化鐵之單晶成長與特性研究” 國立台灣工業技術學院工程技術研究所碩士論文, 1991.
    [11] 彭博緯, “高導電度層狀硫屬化合物之晶體成長與特性研究” 國立台灣科技大學研究所碩士論文, 2019.
    [12] 黃怡華, “二硫化鈮與二硒化鈮層狀奈米材料之電傳輸特性” 國立台灣科技大學研究所碩士論文, 2015.
    [13] 賀佑堯, “二硫化鉭及二硫化錸摻雜鉭之晶體成長及其特性研究” 國立台灣科技大學研究所碩士論文, 2018.
    [14] C. M. Becchi, and M. D'Elia, Introduction to the Basic Concepts of Modern Physics: Springer, 2007.
    [15] K. Siegbahn, “ESCA: atomic, molecular and solid state structure studies by means of electron spectroscopy; pres. to the royal society of sciences of uppsala, Dec. 3rd, 1965,” Nova Acta Regiae Societatis Scientiarum Upsaliensis, 1967.
    [16] 許樹恩, and 吳泰伯, “材料科學叢書 1-X 光繞射原理與材料結構分析,” Chap, vol. 20, pp. 532-533, 1996.
    [17] R. F. Egerton, Physical principles of electron microscopy: Springer, 2005.
    [18] H. H. Rose, “Optics of high-performance electron microscopes,” Sci Technol Adv Mater, vol. 9, no. 1, pp. 014107, 2008.
    [19] 李宗岳, “含碘化合物半導體之光學特性研究” 國立台灣科技大學研究所碩士論文, 2020.
    [20] 紀品睿, “層狀過渡性金屬硫屬化合物W1-xNbxSe2(0≦x≦0.2), MoTe2與WTe2之單晶成長與特性研究” 國立台灣科技大學研究所碩士論文, 2018.
    [21] P. Graves, and D. Gardiner, “Practical raman spectroscopy,” Springer, 1989.
    [22] O. Philips’Gloeilampenfabrieken, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Res. Rep, vol. 13, no. 1, pp. 1-9, 1958.
    [23] D. K. Schroder, Semiconductor material and device characterization: John Wiley & Sons, 2015.
    [24] 倪祥圃, “熱電優值ZT量測方法之研究與實作” 國立台灣大學研究所碩士論文, 2016.
    [25] J. Chastain, and R. C. King Jr, “Handbook of X-ray photoelectron spectroscopy,” Perkin-Elmer, USA, pp. 261, 1992.
    [26] S. Naik, G. K. Pradhan, S. G. Bhat, B. C. Behera, P. S. A. Kumar, S. L. Samal, and D. Samal, “The effect of Sn intercalation on the superconducting properties of 2H NbSe2,” Physica C Supercond, vol. 561, pp. 18-23, 2019.
    [27] J. K. Dash, L. Chen, P. H. Dinolfo, T.-M. Lu, and G.-C. Wang, “A method toward fabricating semiconducting 3R-NbS2 ultrathin films,” J. Phys. Chem. C, vol. 119, no. 34, pp. 19763-19771, 2015.
    [28] J. Joshi, H. M. Hill, S. Chowdhury, C. D. Malliakas, F. Tavazza, U. Chatterjee, A. R. Hight Walker, and P. M. Vora, “Short-range charge density wave order in 2H−TaS2,” Phys. Rev. B, vol. 99, no. 24, 2019.
    [29] T. Yanase, S. Watanabe, F. Uehara, M. Weng, T. Nagahama, and T. Shimada, “Synthesis of Mo1−xNbxS2 thin films by separate-flow chemical vapor deposition with chloride sources,” Thin Solid Films, vol. 649, pp. 171-176, 2018.
    [30] S. Zhao, T. Hotta, T. Koretsune, K. Watanabe, T. Taniguchi, K. Sugawara, T. Takahashi, H. Shinohara, and R. Kitaura, “Two-dimensional metallic NbS2: growth, optical identification and transport properties,” 2D Mater, vol. 3, no. 2, pp. 055027, 2016.
    [31] X. Wang, J. Lin, Y. Zhu, C. Luo, K. Suenaga, C. Cai, and L. Xie, “Chemical vapor deposition of trigonal prismatic NbS2 monolayers and 3R-polytype few-layers,” Nanoscale, vol. 9, no. 43, pp. 16607-16611, 2017.
    [32] A. Niazi, and A. Rastogi, “Low-temperature resistance minimum in non-superconducting 3R-Nb1+ xS2 and 3R-GaxNbS2,” J. Phys. Condens. Matter, vol. 13, no. 31, pp. 6787, 2001.
    [33] Q. Fu, X. Wang, J. Zhou, J. Xia, Q. Zeng, D. Lv, C. Zhu, X. Wang, Y. Shen, X. Li, Y. Hua, F. Liu, Z. Shen, C. Jin, and Z. Liu, “One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2,” Chem. Mater, vol. 30, no. 12, pp. 4001-4007, 2018.
    [34] L. Najafi, S. Bellani, R. Oropesa-Nuñez, B. Martín-García, M. Prato, V. Mazánek, D. Debellis, S. Lauciello, R. Brescia, and Z. Sofer, “Niobium disulphide (NbS2)-based (heterogeneous) electrocatalysts for an efficient hydrogen evolution reaction,” J. Mater. Chem. A, vol. 7, no. 44, pp. 25593-25608, 2019.
    [35] X. Zhou, S. H. Lin, X. Yang, H. Li, M. N. Hedhili, L. J. Li, W. Zhang, and Y. Shi, “MoSx-coated NbS2 nanoflakes grown on glass carbon: an advanced electrocatalyst for the hydrogen evolution reaction,” Nanoscale, vol. 10, no. 7, pp. 3444-3450, 2018.
    [36] A. LeBlanc, and A. Nader, “Resistivity anisotropy and charge density wave in 2H - NbSe2 and 2H - TaSe2,” Solid State Commun, vol. 150, no. 29-30, pp. 1346-1349, 2010.
    [37] C. Grosse, M. B. Alemayehu, M. Falmbigl, A. Mogilatenko, O. Chiatti, D. C. Johnson, and S. F. Fischer, “Superconducting ferecrystals: turbostratically disordered atomic-scale layered (PbSe)1.14(NbSe2)n thin films,” Sci Rep, vol. 6, pp. 33457, 2016.
    [38] P. Jood, and M. Ohta, “Effect of sulfur substitution on the thermoelectric properties of (SnSe)1.16NbSe2: charge transfer in a misfit layered structure,” RSC Adv, vol. 6, no. 107, pp. 105653-105660, 2016.
    [39] R. Qu, X. Wen, Y. Zhao, T. Wang, R. Yao, and J. Lu, “Ultrasonic-assisted top-down preparation of NbSe2 micro/nanoparticles and hybrid material as solid lubricant for sliding electrical contact,” Ultrason Sonochem, vol. 73, pp. 105491, 2021.
    [40] H. Wang, X. Huang, J. Lin, J. Cui, Y. Chen, C. Zhu, F. Liu, Q. Zeng, J. Zhou, P. Yu, X. Wang, H. He, S. H. Tsang, W. Gao, K. Suenaga, F. Ma, C. Yang, L. Lu, T. Yu, E. H. T. Teo, G. Liu, and Z. Liu, “High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition,” Nat Commun, vol. 8, no. 1, pp. 394, 2017.
    [41] G. K. Wertheim, F. J. DiSalvo, and D. N. E. Buchanan, “Site inequivalence inFe1+xNb3−xSe10,” Phys. Rev. B, vol. 28, no. 6, pp. 3335-3338, 1983.
    [42] M. S. El-Bana, D. Wolverson, S. Russo, G. Balakrishnan, D. M. Paul, and S. J. Bending, “Superconductivity in two-dimensional NbSe2 field effect transistors,” Supercond Sci Technol, vol. 26, no. 12, 2013.
    [43] R. Zhao, B. Grisafe, R. K. Ghosh, S. Holoviak, B. Wang, K. Wang, N. Briggs, A. Haque, S. Datta, and J. Robinson, “Two-dimensional tantalum disulfide: controlling structure and properties via synthesis,” 2D Mater, vol. 5, no. 2, pp. 025001, 2018.
    [44] Q. Zeng, X. Wang, X. Xie, G. Lu, Y. Wang, S. Cheng Lee, and J. Sun, “TiO2/TaS2 with superior charge separation and adsorptive capacity to the photodegradation of gaseous acetaldehyde,” Chem. Eng. J, vol. 379, pp. 122395, 2020.
    [45] L. J. Li, W. J. Lu, Y. Liu, Z. Qu, L. S. Ling, and Y. P. Sun, “Influence of defects on charge–density–wave and superconductivity in 1T-TaS2 and 2H-TaS2 systems,” Physica C Supercond, vol. 492, pp. 64-67, 2013.
    [46] Z. Zeng, C. Tan, X. Huang, S. Bao, and H. Zhang, “Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction,” Energy Environ. Sci., vol. 7, no. 2, pp. 797-803, 2014.
    [47] G. A. Sawatzky, and E. Antonides, “The Electronic structure and electron correlation effects studied by xps,” J. phys., Colloq, vol. 37, no. C4, pp. C4-117-C4-123, 1976.

    無法下載圖示 全文公開日期 2026/08/30 (校內網路)
    全文公開日期 2026/08/30 (校外網路)
    全文公開日期 2026/08/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE