簡易檢索 / 詳目顯示

研究生: Jeremy Chandra
Jeremy Chandra
論文名稱: 耐震間柱構架系統之耐震設計方法擬定與性能評估研究
Development of the Seismic Design Method and Evaluations of Vierendeel Frame Systems
指導教授: 蕭博謙
Po-Chien Hsiao
口試委員: 汪向榮
Shiang-Jung Wang
陳沛清
Pei-Ching Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 106
中文關鍵詞: 耐震間柱構架耐震設計方耐震評估数值模型参数研究法
外文關鍵詞: Vierendeel frame, design method, seismic evaluation, numerical model, parametric study
相關次數: 點閱:246下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

耐震間柱構架系統(VF)的開發提出了一種創新的設計方法,即採用間柱(SC)作為主要的側向荷載抵抗系統,而特殊抗彎矩構架(SMRF)則作為邊界構架,這與帶有額外SCs的典型SMRF截然不同。為VF提供一個簡單明了的設計程序可以幫助工程師進行更有效的抗震設計。許多研究發現,SMRF的設計效率低下,這是指超強響應較高。根據所提出的設計程序,並通過在設計中仔細選擇剪力的比例,可以觀察到SCs的強度得到了很好的控制。因此,本研究還對VF響應進行了估算,以幫助工程師直接估算系統的側推分析結果。根據提出的設計程序,本研究評估了一座中層原型建築的抗震性能,並進行了非線性靜態和動態分析,以研究VF系統的行為。


The development of Vierendeel frame (VF) systems presents an innovative design approach which adopts stub columns (SCs) to be the major lateral load resisting system while the special moment-resisting frame (SMRF) acts as a boundary frame, which is opposite to the typical SMRF with additional SCs. Providing a straightforward design procedure for VF may help engineers to design a more efficient seismic resistance design. Where many studies observed there is inefficient design of the SMRF, which refers to the high overstrength response. With the proposed design procedure and by carefully selecting the shear proportion to SCs in the design, it is observed the strength given by SCs is well controlled. Therefore, estimation on the VF response is also presented in the study, to help engineers directly estimate the capacity curve of the system. Following the design procedure proposed, a mid-rise prototype building is assessed its seismic performance in this study, where nonlinear static and dynamic analysis are performed to study the behavior of VF system.

Table of Content Abstract iii Chinese Abstract iv Acknowledgement v Table of Content vi List of Figures viii List of Tables xi List of Equations xii List of Abbreviations and Notations xiv CHAPTER 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Research Motivations 1 1.3 Research Objectives 2 1.4 Thesis Structure 3 CHAPTER 2 LITERATURE REVIEW 5 2.1 Related Research Analysis on Typical SMRF+SCs 5 2.2 Detailing of Stub Columns Connections 6 2.3 Nonlinear Static and Dynamic Analysis 7 CHAPTER 3 DEVELOPMENT OF THE DESIGN OF VIERENDEEL FRAME SYSTEMS 10 3.1 Introduction 10 3.2 Trilinear Strength Curves of the VF 10 3.3 Parametric Study of the VF 12 3.3.1 Design of Model Buildings 13 3.3.2 Design of Stub Columns (SCs) 15 3.3.3 Strong Beam-Weak Stub Column (SBWSC) Check 17 3.4 Numerical Models 19 3.5 Nonlinear Static Pushover Analysis (NLSPA) 21 3.6 Validations of Equation Models 22 CHAPTER 4 SEISMIC PERFORMANCE EVALUATIONS OF VIERENDEEL FRAME SYSTEMS 63 4.1 Introduction 63 4.2 Design of the Prototype Building 63 4.3 Performance Evaluations of the Prototype Building 66 4.3.1 Static Elastic Deformation 66 4.3.2 Nonlinear Static Pushover Analysis 67 4.3.3 Nonlinear Time History Analysis 70 CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 85 5.1 Conclusions 85 5.2 Suggestions for Future Work 86 REFERENCES 87

REFERENCES
[1] P.V. Banavalkar, “Free Spanning Ductile Vierendeel Frame: A System for High-Rise Buildings in Seismic Areas,” The Structural Design of Tall Buildings, vol. 1, 25-34, 1992.
[2] P. C. Hsiao and W. C. Liao, “Effects of Hysteretic Properties of Stud-Type Dampers on Seismic Performance of Steel Moment-Resisting Frame Buildings,” Journal of Structural Engineering, vol. 145, no.7, 2019.
[3] S. J. Chen and C. L. Kuo, “Experimental Study of Vierendeel Frames With LYP Steel Shear Panels,” International Journal of Steel Structures, vol 4, 179-186, 2004.
[4] K. C. Tsai, S. Wu, and E. P. Popov, “Experimental Performance of Seismic Steel Beam-Column Moment Joints,” Journal of Structural Engineering, vol. 121, no. 6, 1995.
[5] H. Krawinkler, S. Mohasseb, “Effects of Panel Zone Deformations on Seismic Response,” Journal of Constructional Steel Research, vol. 8, 233-250, 1987.
[6] Hamburger, Ronald O., Krawinkler, Helmut, Malley, James O., and Adan, Scott M., “Seismic Design of Steel Special Moment Frames: A Guide for Practicing Engineers.” NEHRP Seismic Design Technical Brief No. 2, NEHRP Consultants Joint Venture, NIST SCR 09-917-3, 2009.
[7] ASCE standard, ASCE/SEI 7-16, Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, Reston, Virginia, 2017.
[8] AISC, ANSI/AISC 341-16, Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago, Illinois, 2016.
[9] AISC, ANSI/AISC 360-10, Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, Illinois, 2016.
[10] S. Mazonni, F. McKenna, M. H. Scot, and Gregory L. Fenves, “OpenSees Command Language Manual, “Pacific Earthquake Engineering Research (PEER) Center, 2001.
[11] Federal Emergency Management Agency, Quantification of Building Seismic Performance Factors, FEMA-695, California, 2009.
[12] Federal Emergency Management Agency, NEHRP Guidelines for the Seismic Rehabilitation of Buildings, FEMA-273, Washington, D.C., 1997.

QR CODE