簡易檢索 / 詳目顯示

研究生: 孫榮廷
Jung-Ting Sun
論文名稱: 利用不同酸製備介孔生物活性玻璃粉末於藥物釋放上之應用
Surfactant-free synthesis of mesoporous bioactive glass using spray pyrolysis for drug delivery
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Chen-Hao Wang
游進陽
Chin-Yang Yu
蔡孟霖
Meng-Lin Tsai
林勃遠
Bo-Yuan Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 91
中文關鍵詞: 介孔生物玻璃藥物載體甲酸醋酸乳酸噴霧熱裂解法
外文關鍵詞: Mesoporous bioactive glass, Drug carrier, Formic acid, Acetic acid, Lactic acid, Spray pyrolysis
相關次數: 點閱:345下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著科技及醫療的發展,使得世界人口平均壽命延長,人口老化所面臨的問題逐漸浮現。隨著年齡增長,正常的老化過程會導致各種生理功能退化,據統計,老年人跌倒是事故傷害的第二大原因,跌倒造成的骨折或是頭部外傷將增加感染及罹患病症的機率。根據報導,台灣罹患糖尿病症的患者中,老年人佔據超過四成比例,且糖尿病患者的傷口癒合能力低,此時若老人跌倒骨折受傷產生傷口,同時又患有糖尿病,將容易於手術期間感染,輕則發炎反應,重則危及生命。
老年人的復原能力較差,而介孔生物活性玻璃(Mesoporous Bioactive glass, MBG)具有生物活性且可負載藥物於其孔洞中,將負載藥物的MBG放入人體中時,會在材料表面生成氫氧基磷灰石(Hydroxyapatite, HA),可以有效幫助骨骼修復,且負載的藥物可降低細菌感染的機率,是一種良好的生醫及藥物載體材料,本研究利用噴霧熱解法(Spray pyrolysis, SP)並添加不同濃度的甲酸、醋酸及乳酸作為造孔劑製備高比表面積介孔生物活性玻璃,提升比表面積不但可以提升生物活性,更能增加藥物負載量。本研究結果顯示,高比表面積的MBG同時具有高生物活性及高藥物釋放量等特性。


With the development of science and technology and medical care, the average life expectancy of the world's population has prolonged, the problems faced by the aging population have gradually emerged. With age, the normal aging process will lead to the degradation of various physiological functions. According to statistics, the fall of the elderly is the second leading cause of accidental injuries. Fractures caused by falls or head trauma will increase the risk of infection and illness. According to reports, among the patients with diabetes in Taiwan, the elderly account for more than 40%, and the wound healing ability of diabetic patients is low. At this time, if the old man falls and fractures and wounds, and he has diabetes, it will be easy to be infected during surgery. It is an inflammatory reaction, but it is life-threatening. The resilience of the elderly is poor, and Mesoporous Bioactive glass (MBG) is biologically active and can carry drugs in its pores. When the drug-loaded MBG is placed in the human body, it will produce hydrogen and oxygen on the surface of the material. Hydroxyapatite (HA) can effectively help bone repair, and the loaded drug can reduce the chance of bacterial infection. It is a good biomedical and drug carrier material.
In this study, spray pyrolysis (SP) and different concentrations of formic acid, acetic acid and lactic acid were added as pore-forming agents to prepare high specific surface area mesoporous bioactive glass. Increasing the specific surface area not only improved biological activity, but also increased drug load. the amount. The results of this study show that MBG with high specific surface area has high bioactivity and high drug release.

摘要 I Abstract II 致謝 III 圖目錄 VII 表目錄 X 第一章、緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 第二章、文獻回顧 3 2.1 生醫材料 3 2.1.1 生醫金屬與合金材料 5 2.1.2 生醫陶瓷材料 5 2.1.3 生醫高分子材料 5 2.2 生物活性玻璃 6 2.2.1生物活性玻璃的成分與特性 6 2.2.2生物活性玻璃的應用 7 2.3 生物活性玻璃合成方法 8 2.3.1傳統玻璃合成法(熔融法) 8 2.3.2溶膠凝膠法 9 2.3.3噴霧熱解法 11 2.3.4噴霧乾燥法 19 2.4人口老化的影響與藥物釋放 23 2.4.1 人口老化的影響 23 2.4.2 抗生素 25 2.5研究目的 30 第三章、實驗流程 31 3.1樣品製備 31 3.1.1 生物活性玻璃製備 31 3.1.2模擬人體體液製備 33 3.1.3藥物釋放標準曲線製備(Standard curve) 34 3.1.4藥物釋放及測試 35 3.1.5 實驗藥品 36 3.2分析 37 3.2.1 X-Ray Diffractometer (XRD) 37 3.2.2掃描式電子顯微鏡 (SEM) 37 3.2.3穿透式電子顯微鏡(TEM) 38 3.2.4 Brunaeur Emmet Teller (BET) 38 3.2.5體外生物活性測試 39 3.2.6藥物釋放測試 39 第四章、實驗結果 42 4.1粉末結構 42 4.2粉末表面形貌 44 4.3粒徑分布 46 4.4粉末內部形貌 48 4.5比表面積測試結果(BET) 51 4.6生物活性測試結果(XRD) 55 4.7生物活性測試結果(FTIR) 57 4.8藥物負載及釋放結果 62 第五章、實驗結果討論 65 5.1 造孔劑濃度影響生物活性玻璃比表面積的機制探討 65 5.2介孔生物活性玻璃之比表面積與生物活性探討 68 5.3 介孔生物活性玻璃比表面積與藥物釋放量探討 71 第六章、結論 74 第七章、未來工作 75 參考文獻 76

[1] L.L. Hench, R.J. Splinter, W. Allen, T. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of biomedical materials research, 5 (1971) 117-141.
[2] L.L. Hench, Bioactive ceramics, Annals of the New York academy of sciences, 523 (1988) 54-71.
[3] M. Otsuka, Y. Matsuda, T. Kokubo, S. Yoshihara, T. Nakamura, T. Yamamuro, Drug release from a novel self‐setting bioactive glass bone cement containing cephalexin and its physicochemical properties, Journal of biomedical materials research, 29 (1995) 33-38.
[4] M. Tommila, J. Jokinen, T. Wilson, A.-P. Forsback, P. Saukko, R. Penttinen, E. Ekholm, Bioactive glass-derived hydroxyapatite-coating promotes granulation tissue growth in subcutaneous cellulose implants in rats, Acta biomaterialia, 4 (2008) 354-361.
[5] T. Matsumoto, R. Kuroda, Y. Mifune, A. Kawamoto, T. Shoji, M. Miwa, T. Asahara, M. Kurosaka, Circulating endothelial/skeletal progenitor cells for bone regeneration and healing, Bone, 43 (2008) 434-439.
[6] D. Smrke, P. Rožman, M. Veselko, B. Gubina, Treatment of Bone Defects—Allogenic Platelet Gel and Autologous Bone Technique, Regenerative Medicine and Tissue Engineering, IntechOpen2013.
[7] P. Stoor, V. Kirstilä, E. Söderling, I. Kangasniemi, K. Herbst, A. Yli-Urpo, Interactions between bioactive glass and periodontal pathogens, Microbial ecology in health and disease, 9 (1996) 109-114.
[8] A.M. El-Kady, A.F. Ali, R.A. Rizk, M.M. Ahmed, Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles, Ceramics International, 38 (2012) 177-188.
[9] Sample, Esterification, https://www.chemistryscore.com/esterification/, 2018.
[10] D.F. Williams, On the mechanisms of biocompatibility, Biomaterials, 29 (2008) 2941-2953.
[11] D. Williams, Tissue-biomaterial interactions, Journal of Materials science, 22 (1987) 3421-3445.
[12] C.J. Holmes, D. Faict, Peritoneal dialysis solution biocompatibility: definitions and evaluation strategies, Kidney International, 64 (2003) S50-S56.
[13] R. Wang, F. Cui, H. Lu, H. Wen, C. Ma, H. Li, Synthesis of nanophase hydroxyapatite/collagen composite, Journal of materials science letters, 14 (1995) 490-492.
[14] M. Alexander, Biodegradation and bioremediation, Gulf Professional Publishing1999.
[15] Q. Chen, C. Zhu, G.A. Thouas, Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites, Progress in Biomaterials, 1 (2012) 2.
[16] M. Amaral, M. Lopes, R. Silva, J. Santos, Densification route and mechanical properties of Si3N4–bioglass biocomposites, Biomaterials, 23 (2002) 857-862.
[17] T. Kokubo, H.-M. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials, 24 (2003) 2161-2175.
[18] M. Niinomi, Mechanical properties of biomedical titanium alloys, Materials Science and Engineering: A, 243 (1998) 231-236.
[19] AZoM, Titanium (Ti) - Properties, Applications, 2001.
[20] A.P. Reynolds, W. Tang, T. Gnaupel-Herold, H. Prask, Structure, properties, and residual stress of 304L stainless steel friction stir welds, Scripta Materialia, 48 (2003) 1289-1294.
[21] X. Chen, J. Lu, L. Lu, K. Lu, Tensile properties of a nanocrystalline 316L austenitic stainless steel, Scripta Materialia, 52 (2005) 1039-1044.
[22] AZoM, Stainless Steel - Grade 316 (UNS S31600), 2001.
[23] I. Okulov, U. Kühn, J. Romberg, I. Soldatov, J. Freudenberger, L. Schultz, A. Eschke, C.-G. Oertel, W. Skrotzki, J. Eckert, Mechanical behavior and tensile/compressive strength asymmetry of ultrafine structured Ti–Nb–Ni–Co–Al alloys with bi-modal grain size distribution, Materials & Design (1980-2015), 62 (2014) 14-20.
[24] P. Auerkari, Mechanical and physical properties of engineering alumina ceramics, Technical Research Centre of Finland Espoo1996.
[25] AZoM, Alumina - Aluminium Oxide - Al2O3 - A Refractory Ceramic Oxide, 2001.
[26] W. Ching, P. Rulis, A. Misra, Ab initio elastic properties and tensile strength of crystalline hydroxyapatite, Acta Biomaterialia, 5 (2009) 3067-3075.
[27] C. Oldani, A. Dominguez, Titanium as a Biomaterial for Implants, Recent advances in arthroplasty, InTechOpen2012.
[28] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials, 27 (2006) 1728-1734.
[29] D.C. Hansen, Metal corrosion in the human body: the ultimate bio-corrosion scenario, The Electrochemical Society Interface, 17 (2008) 31.
[30] I. Denry, J.R. Kelly, State of the art of zirconia for dental applications, Dental materials, 24 (2008) 299-307.
[31] C. Serre, M. Papillard, P. Chavassieux, G. Boivin, In vitro induction of a calcifying matrix by biomaterials constituted of collagen and/or hydroxyapatite: an ultrastructural comparison of three types of biomaterials, Biomaterials, 14 (1993) 97-106.
[32] L.L. Hench, Bioceramics: from concept to clinic, Journal of the american ceramic society, 74 (1991) 1487-1510.
[33] L.L. Hench, The story of Bioglass®, Journal of Materials Science: Materials in Medicine, 17 (2006) 967-978.
[34] https://m.glass.com.cn/glassnews/newsinfo_115110.html.
[35] E.M. Valliant, J.R. Jones, Softening bioactive glass for bone regeneration: sol–gel hybrid materials, Soft Matter, 7 (2011) 5083-5095.
[36] L.L. Hench, J.K. West, The sol-gel process, Chemical reviews, 90 (1990) 33-72.
[37] S.-J. Shih, Y.-J. Chou, I.-C. Chien, One-step synthesis of bioactive glass by spray pyrolysis, Journal of Nanoparticle Research, 14 (2012) 1299.
[38] S.-J. Shih, L.-Y.S. Chang, C.-Y. Chen, K.B. Borisenko, D.J. Cockayne, Nanoscale yttrium distribution in yttrium-doped ceria powder, Journal of Nanoparticle Research, 11 (2009) 2145-2152.
[39] M. Julien, S. Khoshniat, A. Lacreusette, M. Gatius, A. Bozec, E.F. Wagner, Y. Wittrant, M. Masson, P. Weiss, L. Beck, Phosphate‐dependent regulation of MGP in osteoblasts: Role of ERK1/2 and Fra‐1, Journal of Bone and Mineral Research, 24 (2009) 1856-1868.
[40] S. Padilla, J. Roman, A. Carenas, M. Vallet-Regı, The influence of the phosphorus content on the bioactivity of sol–gel glass ceramics, Biomaterials, 26 (2005) 475-483.
[41] J. Damen, J. Ten Cate, Silica-induced precipitation of calcium phosphate in the presence of inhibitors of hydroxyapatite formation, Journal of dental Research, 71 (1992) 453-457.
[42] R. Jugdaohsingh, K.L. Tucker, N. Qiao, L.A. Cupples, D.P. Kiel, J.J. Powell, Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort, Journal of Bone and Mineral Research, 19 (2004) 297-307.
[43] S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, Y. Toyama, T. Taguchi, J. Tanaka, The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture, Biomaterials, 26 (2005) 4847-4855.
[44] P.J. Marie, The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis, Bone, 46 (2010) 571-576.
[45] K. Wallace, R. Hill, J. Pembroke, C. Brown, P. Hatton, Influence of sodium oxide content on bioactive glass properties, Journal of Materials Science: Materials in Medicine, 10 (1999) 697-701.
[46] Y.-J. Chou, S.-H. Lin, C.-J. Shih, S.L. Chang, S.-J. Shih, The effect of Ag dopants on the bioactivity and antibacterial properties of one-step synthesized Ag-containing mesoporous bioactive glasses, Journal of Nanoscience and Nanotechnology, 16 (2016) 10001-10007.
[47] S.-J. Shih, C.-Y. Chen, Y.-C. Lin, J.-C. Lee, R.-J. Chung, Investigation of bioactive and antibacterial effects of graphene oxide-doped bioactive glass, Advanced Powder Technology, 27 (2016) 1013-1020.
[48] A.M. Elnahrawy, A.I. Ali, Influence of reaction conditions on sol-gel process producing SiO2 and SiO2-P2O5 gel and glass, New Journal of Glass and Ceramics, 4 (2014) 42.
[49] M.J. Madou, Manufacturing techniques for microfabrication and nanotechnology, CRC press2011.
[50] G.L. Messing, S.C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, Journal of the American Ceramic Society, 76 (1993) 2707-2726.
[51] V. Hilarius, G. Hohenberger, T. Reetz, Chemical Powder Processing of ZnO Varistor Material, 94th Annual Meeting of the American Ceramic Society, Minneapolis, MN, 1992.
[52] S.-J. Shih, Y.-J. Chou, C.-Y. Chen, C.-K. Lin, One-step synthesis and characterization of nanosized bioactive glass, J. Med. Biol. Eng, 34 (2014) 18-23.
[53] https://shia.com.tw/products/detail/7194/275.
[54] F. Lees, Loss Prevention in the Process Industries, 2-nd edition, Elsevier, UK, 3000p, 1996.
[55] V. Mody, R. Jakhete, Dust control handbook, (1988).
[56] R.K. Eckhoff, Understanding dust explosions. The role of powder science and technology, KONA Powder and Particle Journal, 15 (1997) 54-67.
[57] G. Lunn, Guide to Dust Explosion Prevention and Protection: Venting, Gulf Publishing Company1992.
[58] D.o.E.a.S.A. United Nations, Population Division (2017). World Population Ageing 2017 - Highlights (ST/ESA/SER.A/397), the United Nations.
[59] https://www.hpa.gov.tw/Search/GoogleSearch.aspx?queryString=%E9%AA%A8%E8%B3%AA%E7%96%8F%E9%AC%86.
[60] Taiwan Health Organization, National report on diabetes (2015). 2015.
[61] J. Wang, J.D. MacNeil, J.F. Kay, Chemical analysis of antibiotic residues in food, John Wiley & Sons2011.
[62] Z. Li, L. Schulz, C. Ackley, N. Fenske, Adsorption of tetracycline on kaolinite with pH-dependent surface charges, Journal of colloid and interface science, 351 (2010) 254-260.
[63] http://jerryljw.blogspot.com/2016/02/blog-post_25.html.
[64] S.A. Sassman, L.S. Lee, Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange, Environmental Science & Technology, 39 (2005) 7452-7459.
[65] E. Tanis, K. Hanna, E. Emmanuel, Experimental and modeling studies of sorption of tetracycline onto iron oxides-coated quartz, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 327 (2008) 57-63.
[66] E. Michalova, P. Novotna, J. Schlegelova, Tetracyclines in veterinary medicine and bacterial resistance to them. A review, Veterinarni Medicina-UZPI (Czech Republic), (2004).
[67] A.N. Sapadin, R. Fleischmajer, Tetracyclines: nonantibiotic properties and their clinical implications, Journal of the American Academy of Dermatology, 54 (2006) 258-265.
[68] M.E. Parolo, M.C. Savini, J.M. Valles, M.T. Baschini, M.J. Avena, Tetracycline adsorption on montmorillonite: pH and ionic strength effects, Applied Clay Science, 40 (2008) 179-186.
[69] S. Baron, Classification--Medical Microbiology, University of Texas Medical Branch at Galveston1996.
[70] P. Karuppuswamy, J.R. Venugopal, B. Navaneethan, A.L. Laiva, S. Ramakrishna, Polycaprolactone nanofibers for the controlled release of tetracycline hydrochloride, Materials Letters, 141 (2015) 180-186.
[71] N. Alavi, A.A. Babaei, M. Shirmardi, A. Naimabadi, G. Goudarzi, Assessment of oxytetracycline and tetracycline antibiotics in manure samples in different cities of Khuzestan Province, Iran, Environmental science and pollution research, 22 (2015) 17948-17954.
[72] M.E. EL-NAGGAR, et al. , Curdlan in fibers as carriers of tetracycline hydrochloride: Controlled release and antibacterial activity., Carbohydrate polymers, (2016) 154: 194-203.
[73] E.E.A. OZSEKER, Alper., Development of a new antibacterial biomaterial by tetracycline immobilization on calcium-alginate beads., Carbohydrate polymers, (2016) 151: 441-451.
[74] J.M. Andrews, Determination of minimum inhibitory concentrations, Journal of antimicrobial Chemotherapy, 48 (2001) 5-16.

無法下載圖示 全文公開日期 2024/08/13 (校內網路)
全文公開日期 2024/08/13 (校外網路)
全文公開日期 2024/08/13 (國家圖書館:臺灣博碩士論文系統)
QR CODE