簡易檢索 / 詳目顯示

研究生: 周佩吟
Pei-Yin Chou
論文名稱: 釩-鈦-鎢複合材料的合成與分析
Synthesis and Characterization of Vanadium-Titanium-Tungsten Composite Materials
指導教授: 陳建光
Jem-Kun Chen
口試委員: 朱瑾
Jinn P. Chu
郭東昊
Kuo, Dong-Hau
柯富祥
Fu-Shiang Ke
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 99
中文關鍵詞: 氧化鈦氧化釩光降解
外文關鍵詞: Titanium dioxides, Vanadium dioxides, Photocatalyst
相關次數: 點閱:196下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究為V1-xTiXO2-WO3粉末以及V1-xTiXO2-WO3薄膜的性質研究。TiO2現在被廣泛的應用在玻璃上來當作自潔的材料。VO2主要應用在玻璃上來當作節能的材料;高透光性且具備節能功能的玻璃窗以成為現今重要的主題。
利用VO(OiPr)3及WO3混合TTIP所製備而成的粉末作為前驅物,來製備具有更佳之光催化能力的複合材料。於空氣環境下以500℃、700℃的燒結溫度來製備出V1-xTiXO2-WO3奈米粉末,其二氧化鈦的摻雜莫耳比例分別為0、2、4、6、8、10。表示為Ti0V10W0.1、Ti2V8W0.08、Ti4V6W0.06、Ti6V4W0.04、Ti8V2W0.02及Ti10V0W0,並且利用XRD來做複合粉末的晶相鑑定及SEM來分析、觀察該複合材料,經由XRD及TEM 分析Ti10V0W0 均為TiO2(A)相。且各組粉末的SEM型態分別為Ti0V10W0.1、Ti2V8W0.08為長條棒束狀,二氧化鈦的摻雜量增加粉末的型態趨向於形成顆粒圓球狀,500℃製備出的Ti10V0W0比例粉末顆粒大小約為1.096 μm、700℃燒結溫度製備出的Ti10V0W0比例粉末顆粒大小約為164 nm。摻雜2、4、6、8、10 莫耳比例的二氧化鈦形成的V1-xTiXO2-WO3粉末,相轉變溫度可由68℃下降至62℃。TiO2和VO2摻雜作用形成較為穩定的金紅石型TiVO4晶相。
玻璃基材經由氧電漿處理來增加其表面的極性強度,而複合氧化物之前驅物以旋轉塗佈方式在該基材上,隨後於700度的溫度進行熱還原。基材上塗佈1層的V1-xTiXO2-WO3前驅物薄膜厚度約為38.55± 2nm,經700度的溫度燒結後呈現出的薄膜厚度為23.77± 2nm。Ti0V10W0.1、Ti2V8W0.08、Ti4V6W0.06、Ti6V4W0.04、Ti8V2W0.02及Ti10V0W0的亞甲基藍分解率,在紫外光照射24小時後,分別可達到13.11、12.31、40.52、45.70、61.12及91.99%。结果顯示,摻雜氧化釩及二氧化鈦的複合材料具有提高光催化的效率。


The study investigated the properties of V1-xTiXO2-WO3 powder and V1-xTiXO2-WO3 thin film. TiO2 as a self-cleaning materials had been used widely in the glass. VO2 was mainly used in glass as energy-saving materials; a high transparent glass with energy-saving function to become an important topic currently.
TTIP、VO(OiPr)3 and WO3 containing various molar ratio were used to mix to be precursor. It’s had better photocatalytic ability of the composite material. The precursor of V1-xTiXO2-WO3 was sintered at 500℃ and 700℃ under air environment to turn into V1-xTiXO2-WO3 nanopowders. The TiO2 doped molar ratio composition were 0, 2, 4, 6, 8, and 10, expressed as Ti0V10W0.1, Ti2V8W0.08, Ti4V6W0.06, Ti6V4W0.04, Ti8V2W0.02 and Ti10V0W0. X-ray diffraction analysis crystalline phase identification of the composite material and the V1-xTiXO2-WO3 material was observation surface morphology under scanning electron microscope . The results illustrated of Ti0V10W0.1 composite powder and Ti2V8W0.08 composite powder demonstrated rod beam-like, with titanium dioxide doping content increased the formation of powder particles tend to form spherical. Ti10V0W0 powder particle size was about 1.096 μm under 500℃ sintering temperature, Ti10V0W0 powder particle size was about 164 nm in 700℃ sintering temperature. Titanium dioxide was doped 0, 2, 4, 6, 8, 10 molar ratio in the VO2-WO3 decreased the phase transition temperature from 68℃ to 62℃.
The glass substrate by O2 plasma treatment to increase the polarity of the surface strength, the composite oxide precursor was spin-coated on the glass substrate, then by 700℃ temperature thermal reduction. V1-xTiXO2-WO3 precursor was spin-coated one layer on the glass. The precursor of thin film of thickness was about 38.55 ± 2nm. After sintering 700℃, the thin film of V1-xTiXO2-WO3 of thickness was 23.77 ± 2nm. The decomposition efficiency of Methylene blue of Ti0V10W0.1, Ti2V8W0.08, Ti4V6W0.06, Ti6V4W0.04, Ti8V2W0.02 and Ti10V0W0 to approach 13.11、 12.31、 40.52、 45.70、 61.12 and 91.99% under UV light exposure after 24 hours,. The result illustrate that vanadium containing in TiO2 particles enhance the efficiency of photocatalyst.

摘 要 i ABSTRACT iii 目 錄 v 表目錄 vii 圖目錄 viii 1. 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.2.1 V1-XTiXO2-WO3薄膜 3 1.2.2 V1-XTiXO2-WO3複合粉末 3 2. 文獻與理論探討 4 2.1.1 二氧化鈦晶格結構 4 2.1.2 二氧化釩晶格結構 6 1. 二氧化釩特性及應用 7 2.1.4 摻雜物對相轉溫度的影響 8 2.2.5 摻雜量對相轉溫度的影響 10 2.2 二氧化釩之製備方法 11 2.2.1 二氧化釩薄膜 11 2.2.2 二氧化釩粉末 13 2.3 二氧化鈦之製備方法[37] 14 2.3.1 溶膠凝膠法之原理概述 15 3. 實驗 18 3.1實驗藥品 18 3.2實驗儀器 20 3.3實驗儀器原理 22 3.3.1 場發射掃描式電子顯微鏡(FE-SEM) 22 3.3.2 場發-穿透式電子顯微鏡(FE-TEM) 24 3.3.3 紫外線光譜儀(UV-Vis) 27 3.3.4 X光繞射分析儀(XRD) 28 3.3.5 微差掃描卡熱計(DSC) 30 3.3.6 熱重量分析儀(TGA) 31 3.4實驗流程 32 V1-xTiXO2-WO3 粉末製備 32 4. 結果與討論 36 4.1 粉末的相鑑定 36 4.2 粉末的熱性質 49 4.3 粉末的相轉變溫度 51 4.4 粉末的微觀表面分析 53 4.6 薄膜膜厚 67 4.7 薄膜的紫外光降解分析 68 5. 結論 74 參考文獻 76

參考文獻
[1] C. G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G. A. Niklasson, D. R nnow, M. Stromme Mattsson, M. Veszelei and G. Vaivars, “Recent advances in electrochromics for smart windows applications”, Solar Energy, Vol. 63, No. 4, pp. 199-216, 1998.
[2] Huang, Y., Pan, Q. Y., Dong, X. W., Cheng, Z. X., “Synthesis and photochromism of a novel organic–inorganic hybrid film embedded with polyoxomatalates”, Materials Chemistry and Physics., Vol. 97, No. 2-3, pp. 431-436, 2006.
[3] Metroke, T. L., Kachurina, O., Knobbe, E. T., “Spectroscopic and corrosion resistance characterization of GLYMO–TEOS Ormosil coatings for aluminum alloy corrosion inhibition”, Progress in Organic Coatings., Vol. 44, No. 4, pp. 295-305, 2002.
[4] Kang, S., Hong, S. Il., Choe, C. R., Park, M., Rim, S., Kim, J “Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process”, POLYMER., Vol. 42, No. 3, pp. 879-887, 2001.
[5] Lisebiger, A., Lu, G. and Yates, J., “Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results”, Chemical Reviews., Vol. 95, No. 3, pp.735-758, 1995.
[6] Burdett, J., Hughbanks, T., Miller G., Richardson, J., and Smith, J., “Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K”, Journal of the American Chemical Society, Vol. 109, No. 12, pp. 3639-3646, 1987.
[7] Ch. Leroux and G. Nihoul, “From VO2(B) to VO2(R): Theoretical structure of VO2 polymorphs and in situ electron microscopy”, Physical Review B, Vol. 57, No. 9, 5111-5121, 1998.
[8] Volker Eyert, “The metal-insulator transitions of VO2: A band theoretical approach”, Annals Physics., 11, 9, 650-702, 2002.
[9] F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature”, Physical Review Letters, Vol. 3, No. 1, pp.34-36, 1959.
[10] Yoshio Oka, Shoichi Sato, Takeshi Yao and Naoichi Yamamoto, “Crystal structures and transition mechanism of VO2(A)”, Journal of Solid State Chemistry, 141, 594-598, 1998.
[11] Volker Eyert, “The metal-insulator transitions of VO2: A band theoretical approach”, Annals Physics., 11, 9, 650-702, 2002.
[12] 何國川,電化學與無窗簾時代,化工,Vol. 37, No. 3, 32-42, 1990.
[13] John B. Goodenough, “ The two components of crystallographic transition in VO2 ”, Journal of Solid State Chemistry, 3, pp. 490-500,1971.
[14] J. B. Goodenough, “ Interpretation of MxV2O5-β and MxV2−yTyO5-β phases ”, Journal of Solid State Chemistry, 1, pp. 349-358,1970.
[15] Victor Pardo and Warren E. Pickett, “Metal-insulator transition through a semi-Dirac point in oxide nanostructures: VO2 (001) layers confined within TiO2”, Physical Review B, 81, 035111, 2010.
[16] S. Shin, S. Suga, M. Taniguchi, M. Fujisawa, H. Kanzaki, A. Fujimori, H. Daimon, Y. Ueda, K. Kosuge and S. Kachi, “Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO2, V6O13 and V2O3”, Physical Review B, Vol. 41, No. 8, 4993-5009, 1990.
[17] J. B. Goodenough, “Interpretation of MxV2O5-β and MxV2-yTyO5-β phases”, Journal of Solid State Chemistry, 1, 349-358, 1970.
[18] C. Tang, P. Georgopoulos, M. E. Fine, J. B. Cohen, M. Nygren, G. S. Knapp and A. Aldred, “Local atomic and electronic arrangements in WxV1-xO2”, Physical Review B, Vol. 31, No. 2, 1000-1011, 1985.
[19] Shiqine Xu, Hongping Ma, Shixun Dai, Zhonghong Jiang, “Study on optical and electrical switching properties and phase transition mechanism of Mo6+-doped vanadium dioxide thin films”, Journal of Materials Science, 39, 489-493, 2004.
[20] F. Beteille and J. Livage, “Optical switching in VO2 thin films”, Journal of Sol-Gel Science and Technology, 13, 915-921, 1998.
[21] W. Burkhardt, T. Christmann, B.K. Meyer, W. Niessner, D. Schalch, A. Scharmann, “W- and F-doped VO2 films studied by photoelectron spectrometry”, Thin Solid Films, 345, 229-235, 1999.
[22] E. Cavanna, J.P. Segaud and J. Livage, “Optical switching of Au-doped VO2 sol-gel films”, Materials Research Bulletin, Vol. 34, No. 2, pp. 167-177, 1999.
[23] M.A. Sobhan, R.T. Kivaisi, B. Stjerna, C.G. Granqvist, “Thermochromic of sputter deposited WxV1-xO2 films”, Solar Energy Materials & Solar Cells, 44, 451-455, 1996.
[24] Zifei Peng, Yuan Wang, Yanyun Du, Dan Lu, Dazhi Sun, “Phase transition and IR properties of tungsten-doped vanadium dioxide nanopowders”, Journal of Alloys and Compounds, 480, 537-540, 2009.
[25] T.J. Hanlon, J.A. Coath, M.A. Richardson, “Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol-gel method”, Thin Solid Films, 436, 269-272, 2003.
[26] T.J. Hanlon, R.E. Walker, J.A. Caoth, M.A. Richardson, “Comparison between vanadium dioxide coatings on glass produced by sputtering, alkoxide and aqueous sol-gel method”, Thin Solid Films, 405, 234-237, 2002.
[27] Yan Jiazhen, Zhang Yue, Huang Wanxia, Tu Mingjin, “Effect of Mo-W co-doping on semiconductor-metal phase transition temperature of vanadium dioxide film”, Thin Solid Films, 516, 8554-8558, 2008.
[28] Troy D. Manning, Ivan P. Parkin, Martyn E. Pemble, David Sheel and Dimitra Vernardou, “Intelligent window coatings: Atmospheric pressure chemical vapor deposition of tungsten-doped vanadium dioxide”, Chemistry of Materials., 16, 744-749, 2004.
[29] W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B.K. Meyer, W. Niessner, D. Schalch, A. Scharmann, “Tungsten and fluorine co-doping of VO2 films”, Thin Solid Films, 402, 226-231, 2002.
[30] G. Garry, O. Durand, A. Lordereau, “Structural, electrical and optical properties of pulsed laser deposited VO2 thin films on R- and C-sapphire plaens”, Thin Solid Films, 453-454, 427-430, 2004.
[31] H. Bialas, A. Dillenz, H. Downar, P. Ziemann, “Epitaxial relationship and electrical properties of vanadium oxide films on r-cut sapphire”, Thin Solid Films, 338, 60-69, 1999.
[32] Guillermo Guzman, Roger Morineau and Jacques Livage, “Synthesis of vanadium dioxide thin films from vanadium alkoxides”, Materials Research Bulletin, Vol. 29, No. 5, pp. 509-515, 1994.
[33] Kinson C. Kam, Anthony K. Cheetham, “Thermochromic VO2 nanorods and other vanadium oxides nanostructures”, Materials Research Bulletin, 41, 1015-1021, 2006.
[34] Jianqiu Shi, Shuxue Zhou, Bo You, Limin Wu, “Preparation and thermochromic property of tungsten-doped vanadium dioxide particles”, Solar Energy Materials & Solar Cells, 91, 1856-1862, 2007.
[35] Kinson C. Kam, Anthony K. Cheetham, “Thermochromic VO2 nanorods and other vanadium oxides nanostructures”, Materials Research Bulletin, 41, 1015-1021, 2006.
[36] Chenmou Zheng, Jieli Zhang, Guobin Luo, Jiaqing Ye, Mingmei wu, “Preparation of vanadium dioxide powders by thermolysis of a precursor at low temperature”, Journal of Materials Science, 35, 3425-3429, 2000.
[37] Lisa, C. Klein, “Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes ”, Park Ridge, New Jersey, U.S.A.: Noyes Publications, Chap.1, pp.2-13, 1988.
[38] Ding, X. Z., Qi, Z.Z., He, Y. Z., “Effect of Hydrolysis water on the preparation of Nano-Crystalline Titania Powder via a Sol-Gel Process”, Journal of materials Science Letters, 14, pp.21-22, 1995.
[39] Cot, F., Larbot, A., Nabias, G., and Cot, L., “Preparation and Characterization of Colloidal Solution Derived Crystallized Titania Powder”, Journal of European Ceramic Society, 18, pp.2175-2181, 1998.
[40] Courtine, P., Bordes, E.,“ Mode of arrangement of components in mixed vanadia catalyst and its bearing for oxidation catalysis ”, Applied Catalysis A:Gneral,157,pp.45-46,1997.
[41] Yan Jiazhen, Zhang Yue, Huang Wanxia, Tu Mingjin, “Effect of Mo-W co-doping on semiconductor-metal phase transition temperature of vanadium dioxide film”, Thin Solid Films, 516, 8554-8558, 2008.
[42] Jiaguo Yu, Xiujian Zhao and Qingnan Zhao,“ Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method ”, Materials Chemistry and Physics, Vol. 69, No.1-3, pp. 25-29.
[43] S. Musić, M. Gotić, M. Ivanda, S. Popović, A. Turković, R. Trojko, A. Sekulić and K. Furić,“ Chemical and micro structural properties of TiO2 synthesized by sol-gel procedure ”, Materials Science and Engineering B, Vol. 47, No. 1, pp. 33-40.
[44] Serena A. Corr, Madeleine G., Joshua D. F., Brent C. M., Anthony K. Cheetham, Kevin R. H., Ram S.,“ Controlled Reduction of Vanadium Oxide Nanoscrolls: Crystal Structure, Morphology, and Electrical Properties”, Chemistry of Materials., Vol. 20, No. 20, pp.6396–6404 , 2008 .
[45] G. Busca, H. Saussey, O. Saur, J.C. Lavalley and V. Lorenzelli. ,“ FT-IR characterization of the surface acidity of different titanium dioxide anatase preparations”, Applied Catalysis, Vol 14, pp.245-260,1985.

無法下載圖示 全文公開日期 2016/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE