簡易檢索 / 詳目顯示

研究生: 孫祥恩
Hsiang-En Sun
論文名稱: 4 kW雙向全橋CLLC諧振轉換器分析與設計
Analysis and Design of 4 kW Bi-directional CLLC Resonant Converter
指導教授: 林景源
Jing-Yuan Lin
口試委員: 邱煌仁
Huang-Jen Chiu
張佑丞
Yu-Chen Chang
林宜鋒
Yi-Feng Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 99
中文關鍵詞: 全橋CLLC諧振式轉換器零電壓切換閉迴路變頻控制
外文關鍵詞: Closed Loop, Digitally Control
相關次數: 點閱:279下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文主要研製一台最大輸出功率為4 kW的全橋CLLC諧振式轉換器,應用於雙向直流傳輸之充電樁,初級側電網端電壓為400 V、次級側電池端電壓為42 ~ 58 V、滿載輸出功率為4 kW的全橋CLLC諧振式轉換器。本文一開始分析全橋CLLC諧振式轉換器的轉移函式,利用諧振電路的轉移函數來針對品質因數Q、電感比值k等電路參數分析對於增益的影響,並敘述傳統串聯諧振式轉換器的原理及比較。在控制方式方面,本論文使用變頻控制法針對充電模式下電池電壓在動態載時的穩壓度以及放電模式時開機的控制。其中CLLC諧振式轉換器的動作區間、轉移函式以及零電壓切換條件於論文中詳細描述。並模擬在變頻控制模式下電路增益的變化與其應力大小。在電路設計上使用諧振槽轉移函數的關係,規劃設計出一套流程圖,利用模擬及損耗評估來設計出合適的諧振槽參數。最終以實作證明理論分析,量測得最高效率為96.24%。


This thesis presents the development of a 4 kW maximum output power full-bridge CLLC resonant converter for use in bidirectional DC charging stations. The primary side of the grid operates at a voltage of 400 V, while the secondary side connected to the battery operates at voltages ranging from 42 V to 58 V. The full-bridge CLLC resonant converter is capable of delivering a rated output power of 4 kW. The paper begins by analyzing the transfer function of the full-bridge CLLC resonant converter. The impact of circuit parameters such as quality factor (Q) and inductance ratio (k) on the gain is investigated using the transfer function of the resonant circuit. The principles of the conventional series-resonant converter are also described. In terms of control strategy, the paper employs a variable frequency control method to regulate the battery voltage during charging mode and to control the start-up process during discharging mode. The operating range, transfer function, and Zero-Voltage switching conditions of the CLLC resonant converter are detailed in the paper. The variation of circuit gain and stress under variable frequency control mode is simulated and analyzed. For circuit design, a design flowchart is devised based on the relationship of the resonant tank transfer function. Simulation and loss evaluation are utilized to determine suitable parameters for the resonant tank. Finally, experimental results validate the theoretical analysis, with a maximum efficiency of 96.24% measured.

摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文大綱 3 第二章 CLLC諧振式轉換器介紹 4 2.1 理想R-L-C串聯諧振電路 4 2.2 CLLC諧振式轉換器動作原理 5 2.2.1 Region 1動作分析 7 2.2.2 Region 2動作分析 10 2.3 全橋CLLC諧振電路轉移函數分析 13 2.3.1 基本波近似法分析電壓增益 13 2.3.2 品質因數Q對增益曲線的影響 19 2.3.3 電感比值k對增益曲線的影響 20 2.3.4 變壓器初、次級側諧振元件比值b對增益曲線的影響 21 第三章 硬體電路設計 23 3.1 電路規格 23 3.2 電路參數設計流程 24 3.3 電路元件設計 37 3.3.1 功率開關選件 38 3.3.2 諧振電感設計 38 3.3.3 諧振電容設計 41 3.3.4 變壓器設計 42 3.4 損耗評估分析 44 3.4.1 功率開關損耗分析 44 3.4.2 磁性元件損耗分析 46 3.4.3 損耗分析比較 47 第四章 轉換器回授補償設計 52 4.1 理想CLLC諧振轉換器小訊號增益 52 4.2 PI控制分析 58 4.3 數位程式控制方式 63 4.3.1 緩啟動控制 63 4.3.2 電壓環控制 64 第五章 電路模擬與實驗結果 67 5.1 模擬結果 67 5.2 實驗規格與量測儀器 69 5.3 實驗結果 71 5.3.1 實驗波形 71 5.3.2 實驗數據 78 第六章 結論與未來展望 81 6.1 結論 81 6.2 未來展望 81 參考文獻 83

[1] A Global comparison of the life- cycle greenhouse gas emissions of compustion engine and electric passenger cars JULY 20,2021 By:Georg Bieker
[2] Chae, H. J., et al. "3.3 kW on board charger for electric vehicle." 8th International Conference on Power Electronics-ECCE Asia. IEEE, 2011.
[3] Li, Haoran, et al. "A SiC bidirectional LLC on-board charger." 2019 IEEE Applied Power Electronics Conference and Exposition (APEC). Ieee, 2019.
[4] 陳偉晟,「適用於電動載具充電系統之寬範圍輸出電壓LLC諧振式轉換器」,國立台灣科技大學電子工程系碩士論文,2021年。
[5] Y. Wei, Q. Luo, and A. Mantooth, “Overview of Modulation Strategies for LLC Resonant Converter,” IEEE Trans. Power Electron., vol. 35, no. 10, pp. 10423–10443, Oct. 2020.
[6] 岳軒宇,「次級側相移調變控制LLC 諧振式轉換器研製」,國立台灣科技大學電子工程系博士論文,2023年。
[7] Mortazavizadeh, Seyed Abolfazl, et al. "High frequency, high efficiency, and high power density gan-based llc resonant converter: State-of-the-art and perspectives." Applied Sciences 11.23 (2021): 11350.
[8] Li, Xiaoqiang, et al. "Unified modeling, analysis, and design of isolated bidirectional CLLC resonant DC–DC converters." IEEE Journal of Emerging and Selected Topics in Power Electronics 10.2 (2022): 2305-2318.
[9] Zhang, Yi, et al. "Bidirectional LCLL resonant converter with wide output voltage range." IEEE Transactions on Power Electronics 35.11 (2020): 11813-11826.
[10] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd Edition. Norwell, MA: Kluwer Academic, 2001, pp. 331-362.
[11] MPS, How to Select a Lithium-Ion Battery Charge Management IC, 2020, pp. 1-3.
[12] 蔡富斌,「具同步整流之數位控制半橋串聯諧振轉換器之研製」,國立台灣科技大學電子工程系碩士論文,2012年。
[13] 吳義利,切換式電源轉換器,初版,高雄:文笙書局,2012年。
[14] Wolfspeed, “Design Challenges and Considerations of Wolfspeed 22kW High Efficiency Bi-directional DCDC Converter”, Power Applications Oct. 2020.
[15] Liu, Xiaobo, et al. "A Synchronous Rectification Method of Bidirectional CLLC Resonant Converter Based on Phase and Duty Cycle Regulation." IECON 2021–47th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2021.
[16] 岳軒宇,「步階式氣隙變壓器用於LLC型半橋諧振式轉換器」,國立台灣科技大學電子工程系碩士論文,2018年。
[17] Lu, Bing. Investigation of high-density integrated solution for AC/DC conversion of a distributed power system. Diss. Virginia Polytechnic Institute and State University, 2006.
[18] Fei, Chao. Optimization of LLC resonant converters: State-trajectory control and PCB based magnetics. Diss. Virginia Tech, 2018.
[19] Liu, Ya. High efficiency optimization of LLC resonant converter for wide load range. Diss. Virginia Tech, 2007.
[20] Liu, Yuanjun, et al. "Analysis and design of high-efficiency bidirectional GaN-based CLLC resonant converter." Energies 12.20 (2019): 3859.
[21] He, Peiwen, and Alireza Khaligh. "Design of 1 kW bidirectional half-bridge CLLC converter for electric vehicle charging systems." 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE, 2016.
[22] Jung, Jee-Hoon, et al. "Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems." IEEE Transactions on Power Electronics 28.4 (2012): 1741-1755.
[23] Li, Bin, et al. "Bi-directional on-board charger architecture and control for achieving ultra-high efficiency with wide battery voltage range." 2017 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2017.
[24] Min, Jun, and Martin Ordonez. "Bidirectional resonant CLLC charger for wide battery voltage range: Asymmetric parameters methodology." IEEE Transactions on Power Electronics 36.6 (2020): 6662-6673.
[25] Zhang, Xin, Lei Li, and Chengzhi Wan. "Small-signal Modeling of CLLC Bidirectional Resonant Converters." 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2020.
[26] Hsieh, Yi-Hsun, and Fred C. Lee. "Small-signal dynamic and high-bandwidth design of LLC resonant converters." 2020 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2020.
[27] Chandwani, Ashwin, and Ayan Mallik. "Parasitic Component Small Signal Modelling and Control of a Practical CLLC Resonant Converter." IEEE Journal of Emerging and Selected Topics in Power Electronics (2022).
[28] Takagi, Masaaki, Kenji Yamaji, and Hiromi Yamamoto. "Power system stabilization by charging power management of plug-in hybrid electric vehicles with LFC signal." 2009 IEEE Vehicle Power and Propulsion Conference. IEEE, 2009.

無法下載圖示
全文公開日期 2027/07/11 (校外網路)
全文公開日期 2027/07/11 (國家圖書館:臺灣博碩士論文系統)
QR CODE