簡易檢索 / 詳目顯示

研究生: Hamed Cheshideh
Hamed Cheshideh
論文名稱: 腐蝕介質中雙功能氫電催化的非貴金屬觸媒之表面工程和電子密度調節
Surface Engineering and Electron Density Modulation of Precious-Metal-Free Catalysts for Bifunctional Hydrogen Electrocatalysis in Corrosive Media
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 王丞浩
Chen-Hao Wang
王冠文
Kuan-Wen Wang
陳燦耀
Tsan-Yao Chen
施劭儒
Shao-Ju Shih
黃信智
Hsin-Chih Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 105
中文關鍵詞: 表面重建異質結中間體氫氣氧化反應析氫反應電化學調諧腐蝕性介質
外文關鍵詞: Surface reconstruction, Heterojunction intermediates, Hydrogen oxidation reaction, Hydrogen evolution reaction, Electrochemical tuning, Corrosive media
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

用於腐蝕介質中穩健的雙功能氫氧化反應(HOR)和析氫反應(HER)的非貴金屬催化劑的設計和開發面臨嚴峻的挑戰。為了規避這些挑戰,本文報告了兩項新穎的研究。在第一項研究中,透過表面重構調製的鎳修飾的(TiO2)奈米管陣列在鹼性和海水介質中表現出高效的析氫能力。表面重建顯示在鎳奈米結構上生成反應性表面中間體 Ni(OH)2 和 NiOOH。所開發的電催化劑在 1.0 M KOH 電解質中表現出 126 mV 的低 HER 過電位,在海水溶液中表現出 127 mV 的低 HER 過電位,優於商用 Pt/C 催化劑。電極在海水溶液中的長期耐用性可達100小時,為替代腐蝕環境中的鉑族金屬催化劑提供了堅固、耐腐蝕且廉價的材料選擇。
在第二項研究中,透過電化學調諧增強CoSe2/CeO2奈米複合催化劑的吸附/解吸行為
,以實現酸中穩健的雙功能 HOR和HER。電化學調諧導致電極表面形成Ce3+, Co3+
和氧空位,從而調節其電子結構。Ce3+和Co3+這兩種物質被認為是氫物質吸附/解吸的活性位點。 所開發的 t-CoSe2/CeO2 催化劑在 0.5 M H2SO4 電解質中對 HOR 和 HER表現出令人驚嘆的電活性,抑制了 Pt/C電催化劑的電活性。
此外,開發的電極在嚴苛的酸性介質中具有良好的 HOR/HER 穩定性。這項研究表明
,操縱CoSe2/CeO2奈米複合材料的電子結構和表面缺陷密度可以為替代酸中氫氧化/放出反應的貴重催化劑提供有希望的見解。


The design and development of non-precious metal catalysts for robust bifunctional hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) in corrosive media are seriously challenged. Herein, two novel studies are reported in order to circumvent these challenges. In the first study, the nickel-decorated TiO2 nanotube arrays modulated by surface reconstruction exhibit the efficient hydrogen production in the alkaline and corrosive chloride environments. The surface reconstruction process is shown to generate reactive surface intermediates, nickel hydroxide and nickel oxy-hydroxide, over nickel nanostructures. The developed electrocatalyst exhibits a low HER overpotentials of 126 mV in 1.0 M KOH electrolyte and 127 mV in seawater solution, outperforming the commercial Pt/C catalyst. The long-term durability of electrode in seawater solution for 100 hours proposes a robust, corrosion resistive and cheap material choice for replacing the platinum group metals-based catalysts in corrosive environments.
In the second research, the adsorption/desorption behavior of CoSe2/CeO2 nanocomposite catalyst is enhanced by electrochemical tuning for robust bifunctional HOR and HER in acid. The electrochemical tuning results in formation of Ce3+, Co3+ and oxygen vacancies on the surface of electrode, regulating its electronic structure. The two species of Ce3+ and Co3+ are considered as active sites for the adsorption/desorption of hydrogen species. The developed t-CoSe2/CeO2 catalyst illustrates an admirable electroactivity towards HOR and HER in 0.5 M H2SO4 electrolyte, suppressing the electroactivity of Pt/C electrocatalyst. Furthermore, the developed electrode delivers favorable HOR/HER stability in harsh acidic media. This study suggests that manipulating the electronic structure and surface defect density of CoSe2/CeO2 nanocomposite could deliver promising insights for replacing precious catalysts for hydrogen oxidation/evolution reactions in acid.

ABSTRACT i 摘要 iii ACKNOWLEDGMENTS v TABLE OF CONTENTS vi TABLE OF FIGURES ix LIST OF TABLES xiv CHAPTER I INTRODUCTION 1 CHAPTER II LITERATURE REVIEW 4 2.1 Mechanisms of hydrogen evolution in different pH environments 4 2.2 HER in electrolyzers 7 2.3 Mechanisms of hydrogen oxidation in different pH environments 8 2.4 HOR in PEM fuel cells and hydrogen purifiers 11 2.5 Candidate HER electrocatalysts in alkaline media 14 2.6 Candidate HER electrocatalysts in acidic media 16 2.7 Metal selenides for hydrogen electrocatalysis 18 2.8 Strategies to regulate the electronic configuration of transition metal catalysts 22 CHAPTER III MOTIVATION 27 CHAPTER IV EXPERIMENTAL SECTION 28 4.1 Materials 28 4.2 Materials characterization 29 4.3 Electrochemical measurements 32 4.3.1 Electrochemical measurements used for the first study 33 4.3.2 Electrochemical measurements utilized for the second study 33 4.3.3 Kinetic calculations 34 CHAPTER V 37 Reactive Surface Intermediates over Ni-grafted TiO2 Nanotube Arrays towards Hydrogen Evolution Reaction in Alkaline and Chloride Media 37 5.1 Experimental procedure 39 5.1.1 Preparation of titanium surface 39 5.1.2 Growth of vertical TiO2 NTs on titanium surface 39 5.1.3 Decoration of TiO2 NTs with Ni nanostructures 40 5.1.4 Construction of reactive surface intermediates on Ni-grafted TiO2 NTs 40 5.2 Results and discussions 41 CHAPTER VI 62 Electronic Structure and Defect Density Co-modulation of CoSe2/CeO2 Nanocomposite for Efficient Bifunctional Hydrogen Electrocatalysis in Acid 62 6.1 Experimental procedure 64 6.1.1 Fabrication of CoSe2/CeO2 nanocomposite 64 6.1.2 Electrochemical tuning of CoSe2/CeO2 nanocomposite 64 6.2 Results and discussions 65 CHAPTER VII CONCLUSION 86 7.1 Reactive Surface Intermediates over Ni-grafted TiO2 Nanotube Arrays towards Hydrogen Evolution Reaction in Alkaline and Chloride Media 86 7.2 Electronic Structure and Defect Density Co-modulation of CoSe2/CeO2 Nanocomposite for Efficient Bifunctional Hydrogen Electrocatalysis in Acid 87 REFERENCES 88 APPENDIX 102

[1] H. Zeng, S. Chen, Y.Q. Jin, J. Li, J. Song, Z. Le, G. Liang, H. Zhang, F. Xie, J. Chen, Electron density modulation of metallic MoO2 by Ni doping to produce excellent hydrogen evolution and oxidation activities in acid. ACS Energy Letters, 5 (2020) 1908-1915.
[2] X. Li, L. Zhao, J. Yu, X. Liu, X. Zhang, H. Liu, W. Zhou, Water splitting: from electrode to green energy system. Nano-Micro Letters, 12 (2020) 1-29.
[3] T. Zhang, F. Song, Y. Qian, H. Gao, J. Shaw, Y. Rao, Elemental engineering of high-charge-density boron in nickel as multifunctional electrocatalysts for hydrogen oxidation and water splitting. ACS Applied Energy Materials, 4 (2021) 5434-5442.
[4] A. Turnbull, H. Wang, C. Murphy, N. Ho, X. Wang, M. Sormaz, T. Karapanagiotidis, R. Leech, B. Bernhardt, D. Margulies, Left dorsolateral prefrontal cortex supports context-dependent prioritisation of off-task thought. Nature communications, 10 (2019) 3816.
[5] W. Sheng, Z. Zhuang, M. Gao, J. Zheng, J.G. Chen, Y. Yan, Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nature communications, 6 (2015) 5848.
[6] S. Deng, X. Liu, X. Guo, T. Zhao, Y. Lu, J. Cheng, K. Chen, T. Shen, Y. Zhu, D. Wang, Insight into the hydrogen oxidation electrocatalytic performance enhancement on Ni via oxophilic regulation of MoO2. Journal of Energy Chemistry, 54 (2021) 202-207.
[7] Z. Zeng, J. Xing, L. Bonville, D.R. Dekel, R. Maric, S. Bliznakov, Advanced nickel-based catalysts for the hydrogen oxidation reaction in alkaline media synthesized by reactive spray deposition technology: Study of the effect of particle size. International Journal of Hydrogen Energy, (2023).
[8] J. Niu, Z. Xue, J. Tang, S. Rajendran, X. Zhang, J. Qin, Tailoring alloy compositions by glucose towards superior Ni–Cu–C electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, (2023).
[9] K. Ojha, S. Saha, P. Dagar, A.K. Ganguli, Nanocatalysts for hydrogen evolution reactions. Physical Chemistry Chemical Physics, 20 (2018) 6777-6799.
[10] S. Tao, F. Yang, J. Schuch, W. Jaegermann, B. Kaiser, Electrodeposition of nickel nanoparticles for the alkaline hydrogen evolution reaction: Correlating electrocatalytic behavior and chemical composition. ChemSusChem, 11 (2018) 948-958.
[11] V. Vij, S. Sultan, A.M. Harzandi, A. Meena, J.N. Tiwari, W.-G. Lee, T. Yoon, K.S. Kim, Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Acs Catalysis, 7 (2017) 7196-7225.
[12] R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A.P. Paulikas, V. Stamenkovic, N.M. Markovic, Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni (OH) 2-Pt interfaces. Science, 334 (2011) 1256-1260.
[13] V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Energy and fuels from electrochemical interfaces. Nature materials, 16 (2017) 57-69.
[14] D. Strmcnik, M. Uchimura, C. Wang, R. Subbaraman, N. Danilovic, D. Van Der Vliet, A.P. Paulikas, V.R. Stamenkovic, N.M. Markovic, Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nature chemistry, 5 (2013) 300-306.
[15] T. Shinagawa, K. Takanabe, Towards versatile and sustainable hydrogen production through electrocatalytic water splitting: electrolyte engineering. ChemSusChem, 10 (2017) 1318-1336.
[16] M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. International journal of hydrogen energy, 38 (2013) 4901-4934.
[17] T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. science, 317 (2007) 100-102.
[18] D.-Y. Wang, M. Gong, H.-L. Chou, C.-J. Pan, H.-A. Chen, Y. Wu, M.-C. Lin, M. Guan, J. Yang, C.-W. Chen, Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets–carbon nanotubes for hydrogen evolution reaction. Journal of the American Chemical Society, 137 (2015) 1587-1592.
[19] N. Mahmood, Y. Yao, J.W. Zhang, L. Pan, X. Zhang, J.J. Zou, Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Advanced science, 5 (2018) 1700464.
[20] I. Ledezma-Yanez, W.D.Z. Wallace, P. Sebastián-Pascual, V. Climent, J.M. Feliu, M. Koper, Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nature Energy, 2 (2017) 1-7.
[21] B. Conway, B. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochimica acta, 47 (2002) 3571-3594.
[22] H. Lehmann, X. Fuentes-Arderiu, L. Bertello, Glossary of terms in quantities and units in Clinical Chemistry (IUPAC-IFCC Recommendations 1996). Pure and Applied Chemistry, 68 (1996) 957-1000.
[23] T. Schmidt, P. Ross Jr, N. Markovic, Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolytes: Part 2. The hydrogen evolution/oxidation reaction. Journal of Electroanalytical Chemistry, 524 (2002) 252-260.
[24] N. Danilovic, R. Subbaraman, D. Strmcnik, V. Stamenkovic, N. Markovic, Electrocatalysis of the HER in acid and alkaline media. Journal of the Serbian Chemical Society, 78 (2013).
[25] K. Xu, H. Ding, M. Zhang, M. Chen, Z. Hao, L. Zhang, C. Wu, Y. Xie, Regulating water‐reduction kinetics in cobalt phosphide for enhancing HER catalytic activity in alkaline solution. Advanced Materials, 29 (2017) 1606980.
[26] N. Yoshida, T. Morimoto, A new low hydrogen overvoltage cathode for chlor—alkali electrolysis cell. Electrochimica acta, 39 (1994) 1733-1737.
[27] O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, S. Few, Future cost and performance of water electrolysis: An expert elicitation study. International journal of hydrogen energy, 42 (2017) 30470-30492.
[28] S. Zhang, X. Zhang, Y. Rui, R. Wang, X. Li, Recent advances in non-precious metal electrocatalysts for pH-universal hydrogen evolution reaction. Green Energy & Environment, 6 (2021) 458-478.
[29] A. Manabe, M. Kashiwase, T. Hashimoto, T. Hayashida, A. Kato, K. Hirao, I. Shimomura, I. Nagashima, Basic study of alkaline water electrolysis. Electrochimica Acta, 100 (2013) 249-256.
[30] H. Takenaka, E. Torikai, Y. Kawami, N. Wakabayashi, Solid polymer electrolyte water electrolysis. International Journal of Hydrogen Energy, 7 (1982) 397-403.
[31] C. Rakousky, G.P. Keeley, K. Wippermann, M. Carmo, D. Stolten, The stability challenge on the pathway to high-current-density polymer electrolyte membrane water electrolyzers. Electrochimica acta, 278 (2018) 324-331.
[32] C.C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi, M. Comotti, Highly efficient platinum group metal free based membrane‐electrode assembly for anion exchange membrane water electrolysis. Angewandte Chemie International Edition, 53 (2014) 1378-1381.
[33] I. Vincent, D. Bessarabov, Low cost hydrogen production by anion exchange membrane electrolysis: A review. Renewable and Sustainable Energy Reviews, 81 (2018) 1690-1704.
[34] D. Xu, M.B. Stevens, M.R. Cosby, S.Z. Oener, A.M. Smith, L.J. Enman, K.E. Ayers, C.B. Capuano, J.N. Renner, N. Danilovic, Earth-abundant oxygen electrocatalysts for alkaline anion-exchange-membrane water electrolysis: effects of catalyst conductivity and comparison with performance in three-electrode cells. ACS Catalysis, 9 (2018) 7-15.
[35] C. Liu, B.C. Colón, M. Ziesack, P.A. Silver, D.G. Nocera, Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science, 352 (2016) 1210-1213.
[36] E.S. Davydova, S. Mukerjee, F. Jaouen, D.R. Dekel, Electrocatalysts for hydrogen oxidation reaction in alkaline electrolytes. Acs Catalysis, 8 (2018) 6665-6690.
[37] A. Eftekhari, Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 42 (2017) 11053-11077.
[38] S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review. Acs Catalysis, 6 (2016) 8069-8097.
[39] I. Bakos, A. Paszternák, D. Zitoun, Pd/Ni synergestic activity for hydrogen oxidation reaction in alkaline conditions. Electrochimica Acta, 176 (2015) 1074-1082.
[40] J. Durst, A. Siebel, C. Simon, F. Hasché, J. Herranz, H. Gasteiger, New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science, 7 (2014) 2255-2260.
[41] X. Wang, X. Li, D. Kong, L. Zhao, Y. Cui, Y. Wang, T. Cai, Q. Xue, Z. Yan, W. Xing, Platinum-free electrocatalysts for hydrogen oxidation reaction in alkaline media. Nano Energy, (2022) 107877.
[42] B. Pollet, A.A. Franco, H. Su, H. Liang, S. Pasupathi, Proton exchange membrane fuel cells, in: Compendium of Hydrogen Energy, Elsevier, 2016, pp. 3-56.
[43] D.G. Capco, Y. Chen, Nanomaterial. Advances in Experimental Medicine and Biology, 811 (2014).
[44] C. Casati, P. Longhi, L. Zanderighi, F. Bianchi, Some fundamental aspects in electrochemical hydrogen purification/compression. Journal of Power Sources, 180 (2008) 103-113.
[45] G. Sdanghi, G. Maranzana, A. Celzard, V. Fierro, Review of the current technologies and performances of hydrogen compression for stationary and automotive applications. Renewable and Sustainable Energy Reviews, 102 (2019) 150-170.
[46] M. Bampaou, K.D. Panopoulos, A.I. Papadopoulos, P. Seferlis, S. Voutetakis, An electrochemical hydrogen compression model. Chemical Engineering Transactions, 70 (2018) 1213-1218.
[47] J. Zou, N. Han, J. Yan, Q. Feng, Y. Wang, Z. Zhao, J. Fan, L. Zeng, H. Li, H. Wang, Electrochemical compression technologies for high-pressure hydrogen: current status, challenges and perspective. Electrochemical Energy Reviews, 3 (2020) 690-729.
[48] G.N.B. Durmus, C.O. Colpan, Y. Devrim, A review on the development of the electrochemical hydrogen compressors. Journal of Power Sources, 494 (2021) 229743.
[49] S.H. Ahn, S.J. Hwang, S.J. Yoo, I. Choi, H.-J. Kim, J.H. Jang, S.W. Nam, T.-H. Lim, T. Lim, S.-K. Kim, Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis. Journal of Materials Chemistry, 22 (2012) 15153-15159.
[50] T. Lim, S.-K. Kim, Non-precious hydrogen evolution reaction catalysts: Stepping forward to practical polymer electrolyte membrane-based zero-gap water electrolyzers. Chemical Engineering Journal, 433 (2022) 133681.
[51] I.A. Raj, V. Venkatesan, Characterization of nickel-molybdenum and nickel-molybdenum-iron alloy coatings as cathodes for alkaline water electrolysers. International journal of hydrogen energy, 13 (1988) 215-223.
[52] Q. Jin, B. Ren, D. Li, H. Cui, C. Wang, In situ promoting water dissociation kinetic of Co based electrocatalyst for unprecedentedly enhanced hydrogen evolution reaction in alkaline media. Nano Energy, 49 (2018) 14-22.
[53] J. Chen, Y. Ge, Q. Feng, P. Zhuang, H. Chu, Y. Cao, W.R. Smith, P. Dong, M. Ye, J. Shen, Nesting Co3Mo binary alloy nanoparticles onto molybdenum oxide nanosheet arrays for superior hydrogen evolution reaction. ACS applied materials & interfaces, 11 (2019) 9002-9010.
[54] W.-F. Chen, J.T. Muckerman, E. Fujita, Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chemical communications, 49 (2013) 8896-8909.
[55] P. Chen, X. Hu, High‐efficiency anion exchange membrane water electrolysis employing non‐noble metal catalysts. Advanced Energy Materials, 10 (2020) 2002285.
[56] S. Anantharaj, S. Kundu, S. Noda, Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction. Journal of Materials Chemistry A, 8 (2020) 4174-4192.
[57] X. Ren, W. Wang, R. Ge, S. Hao, F. Qu, G. Du, A.M. Asiri, Q. Wei, L. Chen, X. Sun, An amorphous FeMoS 4 nanorod array toward efficient hydrogen evolution electrocatalysis under neutral conditions. Chemical Communications, 53 (2017) 9000-9003.
[58] N. Jiang, Q. Tang, M. Sheng, B. You, D.-e. Jiang, Y. Sun, Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS 2, and Ni 3 S 2 nanoparticles. Catalysis Science & Technology, 6 (2016) 1077-1084.
[59] J. Tang, Y. Chu, K. Wang, B. Deng, Y. Li, X. Tan, Facile In Situ Synthesis of an Ultrafine and Defect-Rich Co-doped MoS2 Nanocluster Catalyst for Efficient Hydrogen Evolution Reaction in Alkaline Medium. ACS Applied Energy Materials, 4 (2021) 2300-2306.
[60] Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 45 (2016) 1529-1541.
[61] M. Zhou, Q. Sun, Y. Shen, Y. Ma, Z. Wang, C. Zhao, Fabrication of 3D microporous amorphous metallic phosphides for high-efficiency hydrogen evolution reaction. Electrochimica Acta, 306 (2019) 651-659.
[62] X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 44 (2015) 5148-5180.
[63] S. Carenco, D. Portehault, C. Boissiere, N. Mezailles, C. Sanchez, Nanoscaled metal borides and phosphides: recent developments and perspectives. Chemical reviews, 113 (2013) 7981-8065.
[64] X. Wang, W. Li, D. Xiong, D.Y. Petrovykh, L. Liu, Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Advanced Functional Materials, 26 (2016) 4067-4077.
[65] R. Wang, X.Y. Dong, J. Du, J.Y. Zhao, S.Q. Zang, MOF‐derived bifunctional Cu3P nanoparticles coated by a N, P‐codoped carbon shell for hydrogen evolution and oxygen reduction. Advanced Materials, 30 (2018) 1703711.
[66] Y.S. Park, J.H. Lee, M.J. Jang, J. Jeong, S.M. Park, W.-S. Choi, Y. Kim, J. Yang, S.M. Choi, Co3S4 nanosheets on Ni foam via electrodeposition with sulfurization as highly active electrocatalysts for anion exchange membrane electrolyzer. International Journal of Hydrogen Energy, 45 (2020) 36-45.
[67] X. Wang, Y. Zhang, H. Si, Q. Zhang, J. Wu, L. Gao, X. Wei, Y. Sun, Q. Liao, Z. Zhang, Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. Journal of the American Chemical Society, 142 (2020) 4298-4308.
[68] T. Lu, S. Dong, C. Zhang, L. Zhang, G. Cui, Fabrication of transition metal selenides and their applications in energy storage. Coordination Chemistry Reviews, 332 (2017) 75-99.
[69] X. Zheng, X. Han, H. Liu, J. Chen, D. Fu, J. Wang, C. Zhong, Y. Deng, W. Hu, Controllable synthesis of Ni x Se (0.5≤ x≤ 1) nanocrystals for efficient rechargeable zinc–air batteries and water splitting. ACS applied materials & interfaces, 10 (2018) 13675-13684.
[70] C. Yang, L. Zhou, C. Wang, W. Duan, L. Zhang, F. Zhang, J. Zhang, Y. Zhen, L. Gao, F. Fu, Large-scale synthetic Mo@(2H-1T)-MoSe2 monolithic electrode for efficient hydrogen evolution in all pH scale ranges and seawater. Applied Catalysis B: Environmental, 304 (2022) 120993.
[71] G. Wang, W. Chen, G. Chen, J. Huang, C. Song, D. Chen, Y. Du, C. Li, K.K. Ostrikov, Trimetallic Mo–Ni–Co selenides nanorod electrocatalysts for highly-efficient and ultra-stable hydrogen evolution. Nano Energy, 71 (2020) 104637.
[72] M.F. Iqbal, W. Gao, Z. Mao, E. Hu, X. Gao, J. Zhang, Z. Chen, Strategies to enhance the electrocatalytic behavior of metal selenides for hydrogen evolution reaction: A review. International Journal of Hydrogen Energy, (2023).
[73] H. Sun, L. Chen, Y. Lian, W. Yang, L. Lin, Y. Chen, J. Xu, D. Wang, X. Yang, M.H. Rümmerli, Topotactically transformed polygonal mesopores on ternary layered double hydroxides exposing under‐coordinated metal centers for accelerated water dissociation. Advanced Materials, 32 (2020) 2006784.
[74] K. Wang, Y. Guo, Z. Chen, D. Wu, S. Zhang, B. Yang, J. Zhang, Regulating electronic structure of two‐dimensional porous Ni/Ni3N nanosheets architecture by Co atomic incorporation boosts alkaline water splitting. InfoMat, 4 (2022) e12251.
[75] X. Peng, A.M. Qasim, W. Jin, L. Wang, L. Hu, Y. Miao, W. Li, Y. Li, Z. Liu, K. Huo, Ni-doped amorphous iron phosphide nanoparticles on TiN nanowire arrays: an advanced alkaline hydrogen evolution electrocatalyst. Nano Energy, 53 (2018) 66-73.
[76] Z. Chen, T.-T. Fan, X. Yu, Q.-L. Wu, Q.-H. Zhu, L.-Z. Zhang, J.-H. Li, W.-P. Fang, X.-D. Yi, Gradual carbon doping of graphitic carbon nitride towards metal-free visible light photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 6 (2018) 15310-15319.
[77] Z. Chen, Y. Ha, Y. Liu, H. Wang, H. Yang, H. Xu, Y. Li, R. Wu, In situ formation of cobalt nitrides/graphitic carbon composites as efficient bifunctional electrocatalysts for overall water splitting. ACS applied materials & interfaces, 10 (2018) 7134-7144.
[78] T. Ling, D.-Y. Yan, H. Wang, Y. Jiao, Z. Hu, Y. Zheng, L. Zheng, J. Mao, H. Liu, X.-W. Du, Activating cobalt (II) oxide nanorods for efficient electrocatalysis by strain engineering. Nature communications, 8 (2017) 1509.
[79] T. Zheng, W. Sang, Z. He, Q. Wei, B. Chen, H. Li, C. Cao, R. Huang, X. Yan, B. Pan, Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution. Nano letters, 17 (2017) 7968-7973.
[80] R. Datta, F. Haque, M. Mohiuddin, B. Carey, N. Syed, A. Zavabeti, B. Zhang, H. Khan, K. Berean, J. Ou, Highly active two dimensional α-MoO 3− x for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 5 (2017) 24223-24231.
[81] L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen. ACS nano, 13 (2019) 6824-6834.
[82] K. Tu, D. Tranca, F. Rodríguez‐Hernández, K. Jiang, S. Huang, Q. Zheng, M.X. Chen, C. Lu, Y. Su, Z. Chen, A novel heterostructure based on RuMo nanoalloys and N‐doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction. Advanced Materials, 32 (2020) 2005433.
[83] T. Liu, A. Li, C. Wang, W. Zhou, S. Liu, L. Guo, Interfacial electron transfer of Ni2P–NiP2 polymorphs inducing enhanced electrochemical properties. Advanced Materials, 30 (2018) 1803590.
[84] P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature chemistry, 2 (2010) 454-460.
[85] H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman, A.H. Fragapane, J. Zhao, H.S. Han, H.C. Manoharan, F. Abild-Pedersen, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature materials, 15 (2016) 48-53.
[86] L. Xiong, Y. Qiu, X. Peng, Z. Liu, P.K. Chu, Electronic structural engineering of transition metal-based electrocatalysts for the hydrogen evolution reaction. Nano Energy, (2022) 107882.
[87] M. Darrudi, H. Tavakol, M.M. Momeni, Electrochemical co-deposition of cobalt and graphene, produced from recycled polypropylene, on TiO2 nanotube as a new catalyst for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 48 (2023) 3495-3510.
[88] L.-Q. Fan, J.-L. Huang, Y.-L. Wang, C.-L. Geng, S.-J. Sun, Y.-F. Huang, J.-M. Lin, J.-H. Wu, TiO2 nanotubes supported ultrafine MnCo2O4 nanoparticles as a superior-performance anode for lithium-ion capacitors. International Journal of Hydrogen Energy, 46 (2021) 35330-35341.
[89] M.A. Farkhondehfal, S. Hernández, M. Rattalino, M. Makkee, A. Lamberti, A. Chiodoni, K. Bejtka, A. Sacco, F. Pirri, N. Russo, Syngas production by electrocatalytic reduction of CO2 using Ag-decorated TiO2 nanotubes. International Journal of Hydrogen Energy, 45 (2020) 26458-26471.
[90] F. Nasirpouri, H. Cheshideh, A.Y. Samardak, A.V. Ognev, A.A. Zubkov, A.S. Samardak, Morphology-and magnetism-controlled electrodeposition of Ni nanostructures on TiO2 nanotubes for hybrid Ni/TiO2 functional applications. Ceramics International, 45 (2019) 11258-11269.
[91] N. Al-Mobarak, A. Al-Swayih, Development of titanium surgery implants for improving osseointegration through formation of a titanium nanotube layer. International Journal of Electrochemical Science, 9 (2014) 32-45.
[92] W.-q. Yu, J. Qiu, L. Xu, F.-q. Zhang, Corrosion behaviors of TiO2 nanotube layers on titanium in Hank's solution. Biomedical Materials, 4 (2009) 065012.
[93] N. Komba, G. Zhang, Z. Pu, M. Wu, F. Rosei, S. Sun, MoS2-supported on free-standing TiO2-nanotubes for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 45 (2020) 4468-4480.
[94] J. Dong, X. Zhang, J. Huang, S. Gao, J. Mao, J. Cai, Z. Chen, S. Sathasivam, C.J. Carmalt, Y. Lai, Boosting heterojunction interaction in electrochemical construction of MoS2 quantum dots@ TiO2 nanotube arrays for highly effective photoelectrochemical performance and electrocatalytic hydrogen evolution. Electrochemistry Communications, 93 (2018) 152-157.
[95] S. Gao, B. Wang, X. Liu, Z. Guo, Z. Liu, Y. Wang, PbTe quantum dots as electron transfer intermediates for the enhanced hydrogen evolution reaction of amorphous MoS x/TiO 2 nanotube arrays. Nanoscale, 10 (2018) 10288-10295.
[96] G. Briggs, P. Snodin, Ageing and the diffusion process at the nickel hydroxide electrode. Electrochimica Acta, 27 (1982) 565-572.
[97] A. Van der Ven, D. Morgan, Y. Meng, G. Ceder, Phase stability of nickel hydroxides and oxyhydroxides. Journal of The Electrochemical Society, 153 (2005) A210.
[98] M. Sabri, A.A. Sarabi, S.M.N. Kondelo, The effect of sodium dodecyl sulfate surfactant on the electrodeposition of Ni-alumina composite coatings. Materials Chemistry and Physics, 136 (2012) 566-569.
[99] A. Kumar Tripathi, M. Chandra Mathpal, P. Kumar, V. Agrahari, M. Kumar Singh, S. Kumar Mishra, M. M Ahmad, A. Agarwal, Photoluminescence and photoconductivity of Ni doped titania nanoparticles. Advanced Materials Letters, 6 (2015) 201-208.
[100] S. Ahmed, Ferromagnetism in Cr-, Fe-, and Ni-doped TiO2 samples. Journal of Magnetism and Magnetic Materials, 442 (2017) 152-157.
[101] V. Kumaravel, S. Rhatigan, S. Mathew, M.C. Michel, J. Bartlett, M. Nolan, S.J. Hinder, A. Gascó, C. Ruiz-Palomar, D. Hermosilla, Mo doped TiO2: impact on oxygen vacancies, anatase phase stability and photocatalytic activity. Journal of Physics: Materials, 3 (2020) 025008.
[102] Z. Liang, H.S. Ahn, A.J. Bard, A study of the mechanism of the hydrogen evolution reaction on nickel by surface interrogation scanning electrochemical microscopy. Journal of the American Chemical Society, 139 (2017) 4854-4858.
[103] X. Wang, Y. Zhu, A. Vasileff, Y. Jiao, S. Chen, L. Song, B. Zheng, Y. Zheng, S.-Z. Qiao, Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction. ACS Energy Letters, 3 (2018) 1198-1204.
[104] H. Baltruschat, S. Ernst, N. Bogolowski, Electrocatalysis at bimetallic surfaces obtained by surface decoration. Catalysis in Electrochemistry: From Fundamentals to Strategies for Fuel Cell Development, John Wiley & Sons, New Jersey, (2011) 297-337.
[105] J. Chun, J.H. Chun, Dual Behavior of Dispersed Ni Nanoparticles for Hydrogen Evolution Reaction at the Interface of Ni/Alkaline Solution. Journal of The Electrochemical Society, 168 (2021) 096512.
[106] Y. Lim, A. Siti, P. Nur Amiera, K. Devagi, Y. Lim, in: AIP Conference Proceedings, AIP Publishing, 2017.
[107] J. Parker, R. Siegel, Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes. Journal of Materials Research, 5 (1990) 1246-1252.
[108] C.-W. Kung, P.-C. Han, C.-H. Chuang, K.C.W. Wu, Electronically conductive metal–organic framework-based materials. APL Materials, 7 (2019) 110902.
[109] Q. Liu, D. Ding, C. Ning, X. Wang, Cobalt-phosphate/Ni-doped TiO2 nanotubes composite photoanodes for solar water oxidation. Materials Science and Engineering: B, 202 (2015) 54-60.
[110] R. Palcheva, L. Dimitrov, G. Tyuliev, A. Spojakina, K. Jiratova, TiO2 nanotubes supported NiW hydrodesulphurization catalysts: characterization and activity. Applied Surface Science, 265 (2013) 309-316.
[111] M. Sobaszek, K. Siuzdak, M. Sawczak, J. Ryl, R. Bogdanowicz, Fabrication and characterization of composite TiO2 nanotubes/boron-doped diamond electrodes towards enhanced supercapacitors. Thin Solid Films, 601 (2016) 35-40.
[112] S.K. Patel, N.S. Gajbhiye, Oxygen deficiency induced ferromagnetism in Cr-doped TiO2 nanorods. Journal of magnetism and magnetic materials, 330 (2013) 21-24.
[113] N. Tripathi, M. Yanagida, A. Nagataki, A. Tripathi, V. Sharma, Synthesis and characterization of Na-doped NiO nanocrystals. Materials Today: Proceedings, 28 (2020) 269-271.
[114] B.S. Yeo, A.T. Bell, In situ Raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. The Journal of Physical Chemistry C, 116 (2012) 8394-8400.
[115] Y.-Z. Su, K. Xiao, N. Li, Z.-Q. Liu, S.-Z. Qiao, Amorphous Ni (OH) 2@ three-dimensional Ni core–shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. Journal of Materials Chemistry A, 2 (2014) 13845-13853.
[116] X. Xia, L. Wang, N. Sui, V.L. Colvin, W.Y. William, Recent progress in transition metal selenide electrocatalysts for water splitting. Nanoscale, 12 (2020) 12249-12262.
[117] Z. Liu, X. Zhang, B. Wang, M. Xia, S. Gao, X. Liu, A. Zavabeti, J.Z. Ou, K. Kalantar-Zadeh, Y. Wang, Amorphous MoS x-coated TiO2 nanotube Arrays for enhanced electrocatalytic hydrogen evolution reaction. The Journal of Physical Chemistry C, 122 (2018) 12589-12597.
[118] N. Job, M. Chatenet, S. Berthon-Fabry, S. Hermans, F. Maillard, Efficient Pt/carbon electrocatalysts for proton exchange membrane fuel cells: Avoid chloride-based Pt salts! Journal of Power Sources, 240 (2013) 294-305.
[119] H. Yi, X. Zhang, R. Zheng, S. Song, Q. An, H. Yang, Rich Se nanoparticles modified cobalt carbonate hydroxide as an efficient electrocatalyst for boosted hydrogen evolution in alkaline conditions. Applied Surface Science, 565 (2021) 150505.
[120] M. Yuan, M. Wang, P. Lu, Y. Sun, S. Dipazir, J. Zhang, S. Li, G. Zhang, Tuning carbon nanotube-grafted core-shell-structured cobalt selenide@ carbon hybrids for efficient oxygen evolution reaction. Journal of colloid and interface science, 533 (2019) 503-512.
[121] X. Wang, L. Zhuang, T. He, Y. Jia, L. Zhang, X. Yan, M. Gao, A. Du, Z. Zhu, X. Yao, Grafting cobalt diselenide on defective graphene for enhanced oxygen evolution reaction. Iscience, 7 (2018) 145-153.
[122] D. Taherinia, M. Moazzeni, S. Moravej, Comparison of hydrothermal and electrodeposition methods for the synthesis of CoSe2/CeO2 nanocomposites as electrocatalysts toward oxygen evolution reaction. International Journal of Hydrogen Energy, 47 (2022) 17650-17661.
[123] Y. Qiu, X. Xie, W. Li, Y. Shao, Electrocatalysts development for hydrogen oxidation reaction in alkaline media: From mechanism understanding to materials design. Chinese Journal of Catalysis, 42 (2021) 2094-2104.
[124] B. Choudhury, A. Choudhury, Ce3+ and oxygen vacancy mediated tuning of structural and optical properties of CeO2 nanoparticles. Materials Chemistry and Physics, 131 (2012) 666-671.
[125] S. Deshpande, S. Patil, S.V. Kuchibhatla, S. Seal, Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Applied Physics Letters, 87 (2005).
[126] S. Gnanam, V. Rajendran, Influence of various surfactants on size, morphology, and optical properties of CeO2 nanostructures via facile hydrothermal route. Journal of Nanoparticles, 2013 (2013).
[127] L. Wang, F. Meng, K. Li, F. Lu, Characterization and optical properties of pole-like nano-CeO2 synthesized by a facile hydrothermal method. Applied surface science, 286 (2013) 269-274.
[128] Y.-R. Zheng, P. Wu, M.-R. Gao, X.-L. Zhang, F.-Y. Gao, H.-X. Ju, R. Wu, Q. Gao, R. You, W.-X. Huang, Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nature communications, 9 (2018) 2533.
[129] L. Zhang, Y. Qian, R. Feng, Y. Ding, X. Zu, C. Zhang, X. Guo, W. Wang, G. Yu, Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries. Nature Communications, 11 (2020) 3843.
[130] X. Yun, T. Lu, R. Zhou, Z. Lu, J. Li, Y. Zhu, Heterostructured NiSe2/CoSe2 hollow microspheres as battery-type cathode for hybrid supercapacitors: Electrochemical kinetics and energy storage mechanism. Chemical Engineering Journal, 426 (2021) 131328.
[131] B. Qiu, C. Wang, N. Zhang, L. Cai, Y. Xiong, Y. Chai, CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation. ACS Catalysis, 9 (2019) 6484-6490.
[132] Y. Hu, W. Liu, K. Jiang, L. Xu, M. Guan, J. Bao, H. Ji, H. Li, Constructing a CeO 2− x@ CoFe-layered double hydroxide heterostructure as an improved electrocatalyst for highly efficient water oxidation. Inorganic Chemistry Frontiers, 7 (2020) 4461-4468.
[133] H.S. Ahmed, W. Roos, O. Ntwaeaborwa, H. Swart, R. Kroon, Effect of annealing on the Ce3+/Ce4+ ratio measured by XPS in luminescent SiO2: Ce. Proceeding SAIP, Division A: Condensed Mater and Material Science, (2011) 280-284.
[134] G. Zhu, X. Xie, X. Li, Y. Liu, X. Shen, K. Xu, S. Chen, Nanocomposites based on CoSe2-decorated FeSe2 nanoparticles supported on reduced graphene oxide as high-performance electrocatalysts toward oxygen evolution reaction. ACS applied materials & interfaces, 10 (2018) 19258-19270.
[135] H. Van der Heide, R. Hemmel, C. Van Bruggen, C. Haas, X-ray photoelectron spectra of 3d transition metal pyrites. Journal of Solid State Chemistry, 33 (1980) 17-25.
[136] C. Alex, S.C. Sarma, S.C. Peter, N.S. John, Competing effect of Co3+ reducibility and oxygen-deficient defects toward high oxygen evolution activity in Co3O4 systems in alkaline medium. ACS Applied Energy Materials, 3 (2020) 5439-5447.
[137] S. Loridant, Raman spectroscopy as a powerful tool to characterize ceria-based catalysts. Catalysis Today, 373 (2021) 98-111.
[138] H. Yue, D. Yang, B. Yu, Y. Lu, W. Zhang, Y. Chen, Porous interwoven CoSe2/C microsphere: a highly efficient and stable nonprecious electrocatalyst for hydrogen evolution reaction. Journal of Materials Science, 54 (2019) 14123-14133.
[139] K. Ullah, Z. Lei, S. Ye, A. Ali, W.-C. Oh, Microwave synthesis of a CoSe 2/graphene–TiO 2 heterostructure for improved hydrogen evolution from aqueous solutions in the presence of sacrificial agents. RSC advances, 5 (2015) 18841-18849.
[140] S.K. Samdarshi, A.K. Agrawal, S. Chauhan, R.K. Singh, M. Kar, J. Kumar, S.K. Jaiswal, Oxygen vacancies induce changes in lattice parameter, photoluminescence characteristics and Raman spectra of sol–gel derived fluorite-type cubic CeO2 and Ce0. 8Zr0. 2− x A x O2 (A= Co/Fe, x= 0–0.2) powders. Applied Physics A, 128 (2022) 712.
[141] M. Lee, in, Friedrich-Alexander Universität Erlangen-Nürnberg, 2017.
[142] D.-Y. Lu, D.-D. Han, X.-Y. Sun, X.-L. Zhuang, Y.-F. Zhang, Raman evidence for Ba-site Ce3+ in BaTiO3. Japanese Journal of Applied Physics, 52 (2013) 111501.
[143] Y. Tomimatsu, S. Kint, J.R. Scherer, Resonance Raman spectra of iron (III)-, copper (II)-, cobalt (III)-, and manganese (III)-transferrins and of bis (2, 4, 6-trichlorophenolato) diimidazolecopper (II) monohydrate, a possible model for copper (II) binding to transferrins. Biochemistry, 15 (1976) 4918-4924.
[144] Y. Peng, P. Kan, Q. Zhang, Y. Zhou, Oxygen vacancy enhanced photoreduction Cr (VI) on few-layers BiOBr nanosheets. Catalysts, 9 (2019) 558.
[145] G. Meng, H. Yao, H. Tian, F. Kong, X. Cui, S. Cao, Y. Chen, Z. Chang, C. Chen, J. Shi, An electrochemically reconstructed WC/WO 2–WO 3 heterostructure as a highly efficient hydrogen oxidation electrocatalyst. Journal of Materials Chemistry A, 10 (2022) 622-631.
[146] X. Ke, F. Zhou, Y. Chen, M. Zhao, Y. Yang, H. Jin, Y. Dong, C. Zou, L. Zhang, S. Wang, Modifying charge transfer between rhodium and ceria for boosted hydrogen oxidation reaction in alkaline electrolyte. Journal of Colloid and Interface Science, 650 (2023) 1842-1850.
[147] Z. Shi, X. Qi, Z. Zhang, Y. Song, J. Zhang, C. Guo, Z. Zhu, Porous cobalt sulfide selenium nanorods for electrochemical hydrogen evolution. ACS omega, 6 (2021) 23300-23310.
[148] H. Cheshideh, H.-Y. Chen, K.-W. Liao, K.-C. Wang, G.-C. Chen, H.-C. Huang, C.-H. Wang, Reactive surface intermediates over Ni-grafted TiO2 nanotube arrays towards hydrogen evolution reaction in alkaline and chloride media. International Journal of Hydrogen Energy, (2023).
[149] Y. Ding, L. Zhao, Y. Tong, W. Kong, B. Li, J. Wang, X. Han, W. Xing, J. Xu, Designing High-Performance Se-Decorated Edges of MoSe2 Nanostripes for the Hydrogen Oxidation Reaction: Effect of Transition Metal Doping. The Journal of Physical Chemistry C, 126 (2022) 13617-13628.
[150] G. Bampos, S. Tsatsos, G. Kyriakou, S. Bebelis, Pd-based bimetallic electrocatalysts for hydrogen oxidation reaction in acidic medium. Journal of Electroanalytical Chemistry, 928 (2023) 117008.
[151] L.-Q. Chai, J.-J. Huang, H.-S. Zhang, Y.-L. Zhang, J.-Y. Zhang, Y.-X. Li, An unexpected cobalt (III) complex containing a Schiff base ligand: Synthesis, crystal structure, spectroscopic behavior, electrochemical property and SOD-like activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 131 (2014) 526-533.
[152] C.A. Buchanan, D. Herrera, M. Balasubramanian, B.R. Goldsmith, N. Singh, Unveiling the cerium (III)/(IV) structures and charge-transfer mechanism in sulfuric acid. JACS Au, 2 (2022) 2742-2757.
[153] X. Chia, A.Y.S. Eng, A. Ambrosi, S.M. Tan, M. Pumera, Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chemical reviews, 115 (2015) 11941-11966.
[154] H. Zhang, B. Yang, X. Wu, Z. Li, L. Lei, X. Zhang, Polymorphic CoSe2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction. ACS applied materials & interfaces, 7 (2015) 1772-1779.

無法下載圖示 全文公開日期 2025/01/25 (校內網路)
全文公開日期 2026/01/25 (校外網路)
全文公開日期 2026/01/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE