簡易檢索 / 詳目顯示

研究生: 周建基
Chien-Chi Chou
論文名稱: 股骨近心端骨折治療之有限元素分析
Finite Element Analysis for the Treatment of Proximal Femoral Fracture
指導教授: 趙振綱
none
王兆麟
none
林晉
none
口試委員:
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 79
中文關鍵詞: 滑動式螺絲骨板迦瑪骨釘雙螺絲骨釘近心端骨折有限元素分析
外文關鍵詞: sliding screw plate, finite element analysis, double screw nail, proximal femur fracture, gamma nail
相關次數: 點閱:302下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

迦瑪骨釘(Gamma nail)和滑動式螺絲骨板(sliding screw plate)已廣泛的應用於治療股骨近心端骨折,從臨床觀察中發現,在骨折治療過程中植入物會發生的失效模式有破壞和鬆脫等情形,且近端股骨可能會因植入物的影響而發生骨切效應風險(Cut-out)。本文主要是利用有限元素模擬分析軟體來評估市售二種骨科植入物(Gamma nail與滑動式螺絲骨板)與自行研發設計之雙螺絲骨釘在臨床上的使用性能及討論其設計之優劣。
在有限元素分析中,股骨模型經由電腦斷層掃描(CT scan)取得骨結構幾何斷面,並經由影像之處理後轉檔輸入至有限元素分析套裝軟體ANSYS中,且以ANSYS建立的三維有限元素分析模型有股骨和植入物。植入物的楊氏係數為230GPa,浦松比為0.3 ; 骨骼之楊氏係數為硬質骨17GPa、鬆質骨0.36GPa,浦松比均為0.3,分析模型之受力與邊界條件為在股骨頭上施加髖關節反力與大轉子上施加肌肉力,以及將股骨遠端表面完全拘束住,植入物與骨骼之界面以接觸元素作模擬,分別考慮二種骨折條件包括:股骨頸骨折與股骨轉子下骨折。於後處理分析上擷取的結果有von Mises應力、股骨位移量和股骨近端骨骼總應變能量(total strain energy)。
從有限元素分析結果中得知骨釘和骨板的von Mises應力都比遲滯螺絲和鎖定螺絲高,且雙螺絲骨釘因為有較小的von Mise應力,所以雙螺絲骨釘有較低的損壞率。而滑動式螺絲骨板因為有較高的股骨近端骨骼總應變能量,所以滑動式螺絲骨板有較高的骨切效應風險。雙螺絲骨釘可以避免迦瑪骨釘在股骨幹產生的應力集中,又能減少滑動式螺絲骨板所產生的高骨切效應風險。本研究所建立之有限元素分析模型可反應出臨床上的觀察結果,且希望本研究可以幫助工程師在股骨內固定器設計上及骨科醫師在臨床使用上之參考依據。


The gamma nail and sliding screw plate have been applied for the treatment of proximal femoral fracture. In the clinical point of view, the implants may fail and cause loss of fracture fixation and impairment of fracture healing. In addition, the proximal femur may be cut out by those implants. In this study, two types of commercial available implants (gamma nail and sliding screw plate) and a newly designed implant (double screw nail) were assessed by finite element analysis. The purposes of this study were to evaluate the performance of these fracture fixators and to discuss the effects of the implants’ geometry and dimension.
In finite element analysis, in accordance with the bone structures and geometry gained from a computed tomography (CT) scan, the anatomical shape for femur was created. Then the CT scan models were transformed into three-dimensional solid models by image processing and Boolean operation. The finite element models which consisted of the femur and implant were established by commercial software ANSYS. The young’s modulus and Poisson’s ratio for the implants were 230 GPa and 0.3 respectively. The young’s modulus for cortical bone was 17 GPa and for cancellous bone was 0.36 GPa. The Poisson’s ratio was 0.3 for both cortical bone and cancellous bone. A joint reaction force which was applied at the center of femoral head and an abductor muscle force which was applied at the greater trochanter were used and the end of distal femur was fully constrained. Contact elements were used for the interfaces between the implant and femur. Two kinds of fracture were discussed including femoral neck fracture and subtrochanter fracture. In postprocessing, the von Mises stress, deflection, total strain energy were derived.
From the results of finite element analysis, the von Mises stress of the nails and plate were greater than that of lag screws and locking screws. The double screw nail had smallest von Mises stress. It meant that the double screw nail had lowest risk of implant failure. The sliding screw plate had largest total strain energy of proximal femur. It implied that the sliding screw plate had highest risk of bone cut-out. The double screw nail could eliminate the stress concentration at the femoral shaft as compared with the gamma nail and decrease the risk of bone cut out as compared with sliding screw plate. Developing the finite element models in this study could reflect the clinical observation. This study could assist the engineers to design new orthopedics implants and help the surgeons select suitable orthopedics implants for their patients.

目 錄 頁次 中文摘要……………………………………………………………… I 英文摘要……………………………………………………………… II 誌 謝……………………………………………………………… III 目 錄……………………………………………………………… IV 符號索引……………………………………………………………… VII 圖表索引……………………………………………………………… VIII 第一章 緒論………………………………………………………….. 1 1.1 研究動機與目的……………………………………………. 1 1.2 股骨的解剖構造……………………………………………. 4 1.3 股骨近端骨折的治療方法………………………................. 7 1.4 鎖定式骨髓內釘簡介………………………………………. 8 1.5 文獻回顧……………………………………………………. 11 1.6 本文架構……………………………………………………. 16 第二章 材料與方法………………………………………………….. 17 2.1 研究方法簡介…………………………………………......... 17 2.2 股骨近端植入物之基本介紹…………………………......... 17 2.3 有限元素法簡介……………………………………………. 23 2.4 股骨有限元素模型的建立…………………………………. 26 2.5 植入物有限元素模型的建立………………………………. 27 2.6 骨折位置的建立……………………………………………. 30 2.7 邊界條件……………………………………………………. 30 2.8 材料性質的給定……………………………………………. 32 2.9 元素型式……………………………………………………. 33 2.10 接觸問題…………………………………………………... 34 2.11 破壞理論…………………………………………………... 35 第三章 結果………………………………………………………….. 37 3.1 雙螺絲骨釘分析結果……………………………................. 38 3.2 迦瑪骨釘分析結果…………………………………………. 39 3.3 滑動式螺絲骨板分析結果…………………………………. 41 3.4 綜合結果……………………………………………………. 42 第四章 綜合討論…………………………………………………….. 60 第五章 結論與未來展望…………………………………………….. 71 5.1 結論…………………………………………………………. 71 5.2 未來展望……………………………………………………. 72 參考文獻……………………………………………………………… 73 作者簡介……………………………………………………………… 79

參考文獻

[1] 楊榮森,臨床骨折學,第268頁,台北,合記圖書出版社,民國七十八年。
[2] Wang, C.J., C.J. Brown, A.L. Yettram, and P. Procter, “Intramedullary Femoral Nails: One or Two Lag Screws? A Preliminary Study,” Medical Engineering & Physics, Vol.22, pp.613-624(2000).
[3] Brown, C.J., C.J. Wang, A.L. Yettram, and P. Procter, “Intramedullary Nails with Two Lag Screws,” Clinical Biomechanics, Vol.19, pp.519-525(2004).
[4] Halder, S.C., “The Gamma Nail for Peritrochanteric Fractures,” J Bone Joint Surg, Vol.74B, pp.340-344(1992).
[5] 陳育斌,股骨鎖定內釘之有限元素分析與生物力學測試,台灣科技大學機械工程系碩士論文,民國90年(2001)。
[6] 林 晉,鎖定式骨髓內釘之基礎科學與臨床應用,第135-149頁,台北,合記圖書出版社,民國93年(2004)。
[7] Haynes, R.C., R.G. Poll, A.W. Miles, and R.B. Weston, “An Experimental Study of the Failure Modes of the Gamma Locking Nail and AO Dynamic Hip Screw Under Static Loading: A Cadaveric Study,” Medical Engineering & Physics, Vol.19, pp.446-453(1997).
[8] Bridle, S.H., A.D. Patel, M. Bircher, and P.T. Calvert, “Fixation of Intertrochanteric Fractures of the Femur,” J Bone Joint Surg, Vol.73B, No.2, pp.330-334(1991).
[9] Deith L. Moore and Arthur F. Dalley,ANATOMY,Hagerstown,Lippincott Williams & Wilkins,2001.
[10] Radford, P.J., M. Needoff, and J.K. Webb, “A Prospective Randomised Comparison of the Dynamic Hip Screw and the Gamma Locking Nail,” J Bone Joint Surg, Vol.75B, No.5, pp.789-793(1993).
[11] Rosenblum, S.F., J.D. Zuckerman, F.J. Kummer, and B.S. Tam, “A Biomechanical Evaluation of the Gamma Nail,” J Bone Joint Surg, Vol.74B, pp.352-357(1992).
[12] Ingman, A.M., “Percutaneous Intramedullary Fixation of Trochanteric Fractures of the Femur Clinical Trial of A New Hip Nail,” Injury, Int. J. Care Injured, Vol.31, pp.483-487(2000).
[13] Sitthiseripratip, K., H.V. Oosterwyck, J.V. Sloten, B. Mahaisavariya, E.L.J. Bohez, J. Suwanprateeb, R.V. Audekercke, and P. Oris, “Finite Element Study of Trochanteric Gamma Nail for Trochanteric Fractrue,” Medical Engineering & Physics, Vol.25, pp.99-106(2003).
[14] Apel, D.M., A. Patwardhsn, M.S. Pinzur, and W.R. Dobozi, “Axial Loaning Studies of Unstable Intertrochanteric Fractures of the Femur,” Clinical Orthopaedics and Related Research, Vol.246, pp.156-164(1989).
[15] Mahomed, N., I. Harrington, J. Kellam, G. Maistrelli, T. Hearn, and J. Vroemen, “Biomechanical Analysis of the Gamma Nail and Sliding Hip Screw,” Clinical Orthopaedics and Related Research, No.304, pp.280-288(1994).
[16] Leung, K.S., W.S. So, W.Y. Shen, and P.W. Hui, “Gamma Nails and Dynamic Hip Screws for Peritorchanteric Fractures,” J Bone Joint Surg, Vol.74B, No.3, pp.345-351(1992).
[17] Gaebler, C., S. stanzl-Tschegg, E.K. Tschegg, C. Kukla, W.A. Menth-Chiari, G.E. wozasek, and T. Heinz, “Implant Failure of the Gamma Nail,” Injury, Int. J. Care Injured, Vol.30, pp.91-99(1999).
[18] Ovadia, D.N.J.L. Chess, “Intraoperative and Postoperative Subtrochanteric Fracture of the Femur Associated with Removal of the Zickel Nail,” J Bone Joint Surg, Vol.70A, No.2, pp.239-243(1988).
[19] 陳新郁、林政仁,有限元素分析 – 理論與應用 ANSYS,第5~7頁,台北,高立圖書有限公司,民國90年(2001)。
[20] Wang, C.J., A.L. Yettram, M.S. Yao, and P. Procter, “Finite Element Analysis of A Gamma Nail within A Fractured Femur,” Medical Engineering, Vol.20, pp.677-683(1998).
[21] Hayes, W.C., E.R. Myers, J.N. Morris, T.N. Gerhart, H.S. Yett, and L.A. Lipsitz, “Impact Near the Hip Dominates Fracture Risk in Elderly Nursing Home Residents who Fall,” Calcif Tissue Int, Vol.52, No.3, pp.192-198(1993).
[22] Brink, W.A.I.M.C. Janssen, “Failure of the Gamma Nail in A Highly Unstable Proximal Femur Fracture: Report of Four Cases Encountered in the Netherlands,” Journal of Orthopaedic Tuauma, Vol.9, No.1, pp.53-56(1995).
[23] Seif-Asaad, S.S., A.V.F. Nargol, and A. Port, “Unstable Intertrochanteric Fracture Treated with the Variwall Reconstruction Nail, Injury,” Vol.26, No.6, pp.367-372(1995).
[24] Garnavos, C., A. Peterman, and P.W. Howard, “The Treatment of Difficult Proximal Femoral Fractures with the Russell-Taylor Reconstruction Nail,” Injury, Int. J. Care Injured, Vol.30, pp.407-415(1999).
[25] Roberts, C.S., A. Nawab, M. Wang, M.J. Voor, and D. Seligson, “Second Generation Intramedullary Nailing of Subtrochanteric Femur Fractures: A Biomechanical Study of Fracture Site Motion,” Journal of Orthopaedic Tuauma, Vol.16, pp.231-238(2002).
[26] Kubiak, E.N., M. Bong, S.S. Park, F. Kummer, K. Egol, and K.J. Koval, “Intramedullary Fixation of Unstable Intertrochanteric Hip Fracture One or Tow Lag Screws,” J Orthop Trauma, Vol.18, pp.12-17(2004).
[27] Seral, B., J.M. Garcia, J. Cegonino, M. Doblare, and F. Seral, “Finite Element Study of Intramedullary Osteosynthesis in the Treatment of Trochanteric Fractures of the Hip: Gamma and PFN,” Injury, Int. J. Care Injured, Vol.35, pp.130-135(2004).
[28] Chen, W.P., C.L. Tai, C.H. Shih, P.H. Hhseh, M.C. Leou, and M.S. Lee, “Selection of Fixation Devices in Proximal Femur Rotational Osteotomy: Clinical Complications and Finite Element Anslysis,” Clinical Biomechanics, Vol.19, pp.255-262(2004).
[29] Fritz, T., D. Hiersemann, C. Krieglstein, and W. Friedl, “Prospective Randomized Comparison of Gliding Nail and Gamma Nail in the Therapy of Trochanteric Fractures,” Arch Orthop Trauma Surg, Vol.119, pp.1-6(1999).
[30] Ashby, M.E.J.C. Anderson, “Treatment of Fractures of the Hip and Ipsilateral Femur with the Zickel Device,” Clinical Orthopaedics and Related Research, pp.156-160(1977).
[31] 余志成,機械系統設計,第60~90頁,台北,高立圖書有限公司,民國91年(2002)。
[32] 梁蘭麗,股骨Z型外翻截骨術之三維有限元素分析,中原大學醫學工程系碩士論文,民國92年(2003)。
[33] 孫施盛,退化性關節炎與骨質疏鬆性股骨頭之生物力學性質分析,陽明大學醫學工程系碩士論文,民國91年(2002)。
[34] 陳博光,現代骨科診療室,第213~221頁,台北,正中書局,民國89年(2000)。

無法下載圖示 全文公開日期 2006/07/01 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE