簡易檢索 / 詳目顯示

研究生: 林均達
Chun-Ta Lin
論文名稱: Miniemulsion/miniemulsion polymerization dealing with interfacial behavior, thermodynamics, transport phenomena, and polymerization
Miniemulsion/miniemulsion polymerization dealing with interfacial behavior, thermodynamics, transport phenomena, and polymerization
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 邱文英
none
林析右
none
陳立仁
none
戴子安
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 145
中文關鍵詞: miniemulsionostwald ripeningregular solutionpolymeric costabilizerRAFT miniemulsion polymerization.
外文關鍵詞: miniemulsion, ostwald ripening, regular solution, polymeric costabilizer, RAFT miniemulsion polymerization.
相關次數: 點閱:359下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

迷你乳化聚合反應係將一不溶於水之小分子量共同安定劑溶解於疏水性單體中,再利用一乳化均質機將此單體混合物與界面活性劑水溶液相混合以製備迷你乳液,由於所產生之乳化單體油滴非常的小(直徑約在 101-102 nm 範圍),致使其所具有之油-水界面面積非常的大,因此在隨後的迷你乳化聚合反應中,這些次微米級之單體油滴粒子即可極有效率地捕捉存在於水連續相中的寡聚自由基而形成聚合體粒子核心。而高分子型共同安定劑在抑制迷你乳液之奧斯瓦老化行為方面,表現的與傳統小分子共同安定劑截然不同。故本研究計劃擬建立一可應用於極廣共同安定劑濃度範圍之理論模式來描述迷你乳液組成分子間(單體/共同安定劑)極其複雜的交互作用對其膠體安定性之影響,不論使用傳統的共同安定劑或高分子型共同安定劑。並使用高分子型共同安定劑探討混合型粒子核心形成機構(單體油滴粒子核心形成程序/均質粒子核心形成程序),建立一反應動力學模式來預測迷你乳化(共)聚合反應所產生之聚合體粒子濃度、聚合體粒子粒徑與粒徑分佈、每顆聚合體粒子所含平均自由基之數目、聚合反應速率以及高分子分子量與分子量分佈等。


The modified Kabal’nov equation developed by a thermodynamic approach dealing with a regular solution of monomer and conventional low molecular weight costabilizer as the two-component disperse phase adequately described the Ostwald ripening rate data in a wide range of the volume fraction of costabilizer for styrene miniemulsions stabilized by a homolog of n-alkane costabilizers (CnH2n+2; n=10, 12, 16, 18, 20, 24, 32) upon aging at 25 ℃. The results showed that the costabilizer with the shortest chain length (C10H22) is not hydrophobic enough to effectively retard the Ostwald ripening process. The effectiveness of n-alkanes as costabilizer in suppressing the Ostwald ripening process increases with increasing n-alkane molecular weight. Nevertheless, further increasing the n-alkane chain length from C24H50 to C32H66 does not lead to significant improvement in the effectiveness of n-alkane as costabilizer.
Another mechanistic model that describes the Ostwald ripening behavior with a regular solution of monomer (styrene (ST) herein) and different polymeric costabilizers as the disperse phase of miniemulsion in such a colloidal system was developed. The validity of this model was verified by the Ostwald ripening rate data obtained from ST miniemulsions stabilized by living polystyrene costabilizer (PSlc) or polystyrene costabilizer (PSc) upon aging at 25 ℃. PSlc is more effective in retarding the Ostwald ripening process than PSc, though PSlc and PSc have comparable number-average molecular weights. The model can be also used to study the mutual interaction between monomer and polymeric costabilizer. Satisfactory modeling results achieved for ST miniemulsions using polymethyl methacrylate as the costabilizer (PMMAc) further verify the general validity of the present model. The values of heat of mixing and interaction parameter between ST and different polymeric costabilizers were also determined.
We then investigated the effects of the molecular weight of PSc and PMMAc on the Ostwald ripening behavior at 25 ℃ of ST miniemulsions and the polymerization of these miniemulsions. The effectiveness of PSc and PMMAc in retarding the diffusional degradation of ST miniemulsions decreases with increasing the molecular weight of PSc or PMMAc. The Ostwald ripening rate data were used to determine the critical chain length of polymeric costabilizers to induce chain entanglements. The resultant critical chain length to induce chain entanglements is 363871475 and 7668521 g mol-1 for PSc and PMMAc, respectively, which are comparable to those reported in the literature. The polymerization of the ST miniemulsions stabilized by PMMAc with different molecular weights at 70 ℃ were then carried out. The polymerization rate decreases with increasing the polymeric costabilizer molecular weight. This was attributed to the reduced number of latex particles (i.e., reaction loci) with the polymeric costabilizer molecular weight. The miniemulsion polymerization kinetics is primarily controlled by the particle nucleation process (the competition between the monomer droplet nucleation and homogeneous nucleation), which is closely related to the effectiveness of these costabilizers in retarding the Ostwald ripening process.
Finally, RAFT miniemulsion polymerizations of styrene with living polystyrene (PSlc) serving as both RAFT reagent and polymer costabilizer were discussed. The miniemulsion upon aging at 25 oC showed satisfactory stability against the Ostwald Ripening process. The rate of polymerization for RAFT miniemulsion polymerization initiated by oil-soluble AIBN is much slower than that for the water-soluble SPS counterpart. In addition to the predominant monomer droplet nucleation, much stronger particle nucleation taking place in the continuous aqueous phase (homogeneous nucleation) for the run with AIBN was observed. It is the different extents of homogeneous nucleation that is responsible for the quite different kinetic behaviors between the RAFT miniemulsion polymerizations initiated by different types of initiator (AIBN versus SPS). Furthermore, increasing initial molar ratio of RAFT reagent to AIBN greatly enhances the characteristics of RAFT polymerization (i.e., better control over polymer chain growth with the progress of polymerization).

Contents ContentsI List of TablesVI List of SchemesVII List of FiguresVII Chapter 1 Introduction1 1.1 Miniemulsion stability and polymerization1 1.2 RAFT miniemulsion polymerization5 1.3 The framework of this research7 1.4 Reference10 Chapter 2 Modeling Ostwald ripening rate of styrene miniemulsions stabilized by a homolog of n-alkane costabilizers16 2.1 Introduction17 2.2 Model Development20 2.2.1 Partial molar Gibbs free energy of a regular solution20 2.2.2 Excess chemical potential of component 1 (e.g., monomer) in the two-component disperse phase system for the case of zero solubility of component 2 (e.g., costabilizer) in water22 2.2.3 Ostwald ripening rate in the two-component disperse phase system for the case of nonzero solubility of component 2 in water26 2.3 Modeling the Ostwald ripening rate of styrene miniemulsions stabilized by a homolog of n-alkanes30 2.4 Conclusion40 2.5 References 42 Chapter 3 Modeling the role of polymeric costabilizers in retarding Ostwald ripening involved in styrene miniemulsions.46 3.1 Introduction47 3.2 Model Development49 3.2.1 Partial molar free energy of monomer in the presence of polymer in a two-component disperse phase system49 3.2.2 Excess chemical potential of monomer in the two-component disperse phase system for the case of zero solubility of polymeric costabilizer in water51 3.2.3 Ostwald ripening rate in the two-component disperse phase system for the case of nonzero solubility of polymeric costabilizer in water55 3.3 Experimental59 3.3.1 Materials59 3.3.2 Preparation and characterization of living polystyrene costabilizer60 3.3.3 Preparation and characterization of miniemulsions62 3.4 Results and discussion63 3.4.1 Characterization of living polystyrene costabilizer and polystyrene costabilizer63 3.4.2 Ostwald ripening behavior of ST miniemulsions64 3.5 Conclusion71 3.6 References73 Chapter 4 Effects of the molecular weight of polymeric costabilizers on the Ostwald ripening behavior and the polymerization kinetics of styrene miniemulsions77 4.1 Introduction79 4.2 Experimental82 4.2.1 Materials82 4.2.2 Preparation and characterization of polymeric costabilizers83 4.2.3 Preparation and characterization of miniemulsions85 4.2.4 ST miniemulsion polymerization kinetics86 4.3 Results and discussion87 4.3.1 Ostwald ripening behavior of ST miniemulsions87 4.3.2 Polymerization kinetics of ST miniemulsions96 4.5 Conclusion101 4.6 References103 Chapter 5 Effect of living polystyrene costabilizer on styrene miniemulsion polymerization109 5.1 Introduction110 5.2 Experimental113 5.2.1 Materials113 5.2.2 Preparation and characterization of living polystyrene costabilizer114 5.2.3 Preparation and characterization of miniemulsions116 5.2.4 ST miniemulsion polymerization kinetics116 5.3 Results and discussion117 5.3.1 Characterization of living polystyrene costabilizer117 5.3.2 Ostwald ripening behavior of ST miniemulsions120 5.3.2.1 Effect of polymer costabilizer molecular weight120 5.3.2.2 Ostwald ripening rate of ST miniemulsions121 5.3.3 Polymerization kinetics of ST miniemulsions122 5.4 Conclusion135 5.5 References 137 Chapter 6 Conclusion141 List of Tables Chapter 2 Table 132 Chapter 2 Table 233 Chapter 3 Table 167 Chapter 4 Table 184 Chapter 4 Table 294 Chapter 4 Table 3101 List of Schemes Chapter 2 Scheme 121 Chapter 2 Scheme 224 Chapter 5 Scheme 1111 List of FIgures Chapter 2 Figure 125 Chapter 2 Figure 229 Chapter 2 Figure 332 Chapter 2 Figure 435 Chapter 2 Figure 535 Chapter 2 Figure 636 Chapter 2 Figure 739 Chapter 3 Figure 150 Chapter 3 Figure 264 Chapter 3 Figure 364 Chapter 3 Figure 466 Chapter 3 Figure 570 Chapter 3 Figure 670 Chapter 4 Figure 191 Chapter 4 Figure 292 Chapter 4 Figure 396 Chapter 4 Figure 497 Chapter 5 Figure 1118 Chapter 5 Figure 2119 Chapter 5 Figure 3119 Chapter 5 Figure 4122 Chapter 5 Figure 5123 Chapter 5 Figure 6127 Chapter 5 Figure 7129 Chapter 5 Figure 8132 Chapter 5 Figure 9132 Chapter 5 Figure 10134 Chapter 5 Figure 11135

Chapter 1 Reference:
1.Capek I., Chern C.S., Radical Polymerization in Direct Mini-Emulsion Systems, Advances in Polymer Science 155 (2001) 101-165.
2.Antonietti M., Landfester K., Polyreactions in miniemulsions, Progress in Polymer Science 27 (2002) 689-757.
3.Asua J.M., Miniemulsion Polymerization, Progress in Polymer Science 27 (2002) 1283-1346.
4.Chern C.S. Principles and Applications of Emulsion Polymerization, Wiley, New Jersey, 2008 Chapter 5.
5.C. S. Chern and Y. C. Liou, J. Polym. Sci. Pol. Chem., 37, 2537 (1999).
6.M. Lin, J. C. C. Hsu and M. F. Cunningham, J. Polym. Sci. Pol. Chem., 44, 5974 (2006).
7.C. S. Chern and H. T. Chang, Polym. Int., 51, 1428 (2002).
8.Higuchi W.I., Misra J., Physical degradation of emulsions via the molecular diffusion route and the possible prevention thereof, Journal of Pharmaceutical Sciences 51 (1962) 459-466.
9.Kabalnov A.S., Shikubin E.D., Ostwald Ripening Theory: Applications to Fluorocarbon Emulsion Stability, Advances in Colloid and Interface Science 38 (1992) 69-97.
10.Taylor P., Ostwald ripening in emulsions, Colloids and Surfaces A:Physicochemical and Engineering Aspects 99 (1995) 175-185.
11.Taylor P., Ostwald ripening in emulsions, Advances in Colloid and Interface Science 75 (1998)107-163.
12.Webster A.J., Cates M.E., Stabilization of Emulsion by Trapped Species, Langmuir 14 (1998) 2068-2079.
13.Weers J.G., Molecular diffusion in emulsions and emulsion mixtures; Binks B.P., Editor, Modern Aspects of Emulsion Science, The Royal Society of Chemistry, Cambridge, UK, 1998 pp. 292-327.
14.Kabal’nov AS, Pertzov AV, Shikubin ED. Ostwald Ripening in Two-Component Disperse Phase Systems: Application to Emulsion Stability. Colloids Surf 1987; 24: 19-32.
15.Tauer K. Stability of monomer emulsion droplets and implications for polymerizations therein. Polymer 2005; 46: 1385-94.
16.Meliana Y., Cala N.A., Lin C.T., Chern C.S., Ostwald Ripening of Two-Component Disperse Phase Miniemulsions Containing Monomer and Reactive Costabilizer, Journal of Dispersion Science and Technology 31 (2010) 1568-1573.
17.Wang S., Schork, F.J., Miniemulsion polymerization of vinyl acetate with nonionic surfactant, Journal of Applied Polymer Science 54 (1994) 2157-2164.
18.Miller, C.M., Blythe, P.J., Sudol, E.D., Silebi, C.A., El-Aasser, M.S., Effect of the presence of polymer in miniemulsion droplets on the kinetics of polymerization , Journal of Polymer Science Part A: Polymer Chemistry 32 (1994) 2365-2376.
19.Miller, C.M., Sudol, E.D., Silebi, C.A., El-Aasser, M.S., Polymerization of miniemulsions prepared from polystyrene in styrene solutions. 1. Benchmarks and limits, Macromolecules 28 (1995) 2754-2764.
20.Miller, C.M., Sudol, E.D., Silebi, C.A., El-Aasser, M.S., Polymerization of miniemulsions prepared from polystyrene in styrene solutions. 2. Kinetics and mechanism, Macromolecules 28 (1995) 2765-2771.
21.Miller, C.M., Sudol, E.D., Silebi, C.A., El-Aasser, M.S., Polymerization of miniemulsions prepared from polystyrene in styrene solutions. 3. Potential differences between miniemulsion droplets and polymer particles, Macromolecules 28 (1995) 2772-2780.
22.Reimers, J., Schork, F.J., Robust nucleation in polymer-stabilized miniemulsion polymerization, Journal of Applied Polymer Science 59 (1996) 1833-1841.
23.Reimers, J., Schork, F.J., Predominant droplet nucleation in emulsion polymerization, Journal of Applied Polymer Science 60 (1996) 251-262.
24.Meliana, Y., Lin, C.T., Suprianti, L., Huang, Y.J., Chern, C.S., Characterization of Costabilizers in Retarding Ostwald Ripening of Monomer Miniemulsions, Journal of Dispersion Science and Technology 33 (2012) 1346-1353.
25.Sperling, L.H. Introduction to Physical Polymer Science, 4th ed., Wiley-Interscience, New York, 2006 p. 537.
26.K. Matyjaszewski and T. P. Davis, in Handbook of Radical Polymerization, John Wiley & Sons, Inc., Hoboken, New Jersey, 2003, Chapter 8, p. 361.
27.K. Matyjaszewski and J. Spanswick, Mater. Today, 8, 26 (2005).
28.V. Coessens, T. Pintauer and K. Matyjaszewski, Prog. Polym. Sc., 26, 337 (2001).
29.J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes and B. Charleux, Prog. Polym. Sci., 38, 63 (2013).
30.G. Moad, E. Rizzardo and S. H. Thang, Polymer, 49, 1079 (2008).
31.P. Ganjeh-Anzabi, V. Haddadi-Asl, M. Salami-Kalajahi and M. Abdollahi, J. Polym. Res., 20, 248 (2013).
32.J. Ma and H. Zhang, J. Polym. Res., 21, 614 (2014).
33.M. Lansalot, C. Farcet, B. Charleux and J. P. Vairon, Macromolecules, 32, 7354 (1999).
34.G. Moad, E. Rizzardo and S. H. Thang, Aust. J. Chem., 58, 379 (2005).
35.L. Barner, T. P. Davis, M. H. Stenzel and C. Barner-Kowollik, Macromol. Rapid Commun., 28, 539 (2007).
36.A. B. Lowea and C. L. McCormick, Prog. Polym. Sci., 32, 283 (2007).
37.J. B. McLeary and B. Klumperman, Soft Matter, 2, 45 (2006).
38.J. Qiu, B. Charleux and K. Matyjaszewski, Prog. Polym. Sci., 26, 2083 (2001).
39.K. Matyjaszewski and T. P. Davis, in Handbook of Radical Polymerization, John Wiley & Sons, Inc., Hoboken, New Jersey, 2003, Chapter 12, p. 629.
40.J. Chiefari, Y. K. (Bill) Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo and S. H. Thang. Macromolecules, 31, 5559 (1998).
41.R. T. A. Mayadunne, J. Jeffery, G. Moad and E. Rizzardo, Macromolecules, 36, 1505 (2003).
42.V. Mishra and R. Kumar, Journal of Scientific Research, 56, 141 (2012).
43.A. Butte, G. Storti and M. Morbidelli, Macromolecules, 33, 3485 (2000).
44.M. J. Monteiro and J. D. Barbeyrac, Macromolecules, 34, 4416 (2001).
45.I. Uzulina, S. Kanagasabapathy and J. Claverie, Macromolecular Symposia, 150, 33 (2000).
46.M. J. Monteiro, M. Hodgson and H. D. Brouwer, J. Polym. Sci. Pol. Chem., 38, 3864 (2000).
47.G. Moad, J. Chiefari, Y. K. (Bill) Chong, J. Krstina, R. T. A. Mayadunne, A. Postma, E. Rizzardo and S. H. Thang, Polym. Int., 49, 993 (2000).
48.Meliana Y, Chern CS. Effect of the Molecular Weight of n-Alkane Costabilizers on the Ostwald Ripening of Styrene Miniemulsions. J Disper Sci Technol 2013; 34: 632-8.
49.Morton M, Kaizerman S, Altier MW, Swelling of latex particles, J Colloid Sci, 1954; 9: 300-12.

Chapter 2 Reference:
1. Capek I, Chern CS. Radical Polymerization in Direct Mini-Emulsion Systems. Adv Polym Sci 2001; 155: 101-65.
2. Antonietti M, Landfester K. Polyreactions in miniemulsions. Prog Polym Sci 2002; 27: 689-757.
3. Asua JM. Miniemulsion polymerization, Prog Polym Sci 2002; 27:1283-346.
4. Chern CS. Principles and Applications of Emulsion Polymerization. New York: John Wiley & Sons; 2008.
5. Taylor P. Ostwald ripening in emulsions. Colloid Surf A-Physicochem Eng Asp 1995; 99: 175-85.
6. Taylor P. Ostwald ripening in emulsions. Adv Colloid Interfac 1998; 75:107-63.
7. Kabal’nov AS, Shikubin ED. Ostwald ripening theory: applications to fluorocarbon emulsion stability. Adv Colloid Interfac 1992; 38: 69-97.
8. Higuchi WJ, Misra J. Physical degradation of emulsions via the molecular diffusion route and the possible prevention thereof. J Pharm Sci-Us 1962; 51: 459-66.
9. Kabal’nov AS, Pertzov AV, Shikubin ED. Ostwald Ripening in Two-Component Disperse Phase Systems: Application to Emulsion Stability. Colloids Surf 1987; 24: 19-32.
10. Tauer K. Stability of monomer emulsion droplets and implications for polymerizations therein. Polymer 2005; 46: 1385-94.
11. Meliana Y, Cala NA, Lin CT, Chern CS. Ostwald Ripening of Two-Component Disperse Phase Miniemulsions Containing Monomer and Reactive Costabilizer. J Disper Sci Technol 2010; 31: 1568-73.
12. Meliana Y, Chern CS. Effect of the Molecular Weight of n-Alkane Costabilizers on the Ostwald Ripening of Styrene Miniemulsions. J Disper Sci Technol 2013; 34: 632-8.
13. Porter DA, Easterling KE. Phase Transformations in Metals and Alloys. 2nd edition. London: Chapman & Hall; 1992.
14. Skinner LM, Sambles JR. The Kelvin equation—a review. J Aerosol Sci 1972; 3: 199-210.
15. Pertzov AV, Kabal’nov AS, Shchukin ED. Recondensation of Particles of a Two-Component Disperse Phase in the Case of a Large Difference in the Solubility of the Components in the Dispersion Medium. Colloid J USSR 1984; 46: 1015-8.
16. Lifshitz IM, Slozov VV. The Kinetics of Precipitation from Supersaturated Solid Solution. J Phys Chem Solids 1961; 19: 35-50.
17. Baker EG. Origin and migration of oil. Science 1959; 129: 871-4.
18. Franks F. Solute–water interactions and the solubility behaviour of long-chain paraffin hydrocarbons. Nature (London) 1966; 210: 87-8.
19. McAuliffe C. Solubility in water of paraffin, cycloparafin, olefin, acetylene, cycloefin, and aromatic hydrocarbons. J Phys Chem 1966; 70: 1267-75.
20. Sutton C, Calder JA. Solubility of higher-molecular-weight normal-paraffins in distilled water and sea water. Environ Sci Technol 1974; 8: 654–7.
21. Taylor P. Ostwald ripening in emulsions: estimation of solution thermodynamics of the disperse phase. Adv Colloid Interface Sci 2003; 106: 261-85.
22. Kabalnov AS, Makarov KN, Pertzov AV, Shchukin ED. Ostwald ripening in emulsions: 2. Ostwald ripening in hydrocarbon emulsions: Experimental verification of equation for absolute. J Colloid Interface Sci 1990; 138: 98-104.
23. Tolls J, Dijk JV, Verbruggen EJM, Hermens JLM, Loeprecht B, Schüürmann G. Aqueous Solubility−Molecular Size Relationships: A Mechanistic Case Study Using C10- to C19-Alkanes. J Phys Chem A 2002; 106: 2760–5.
24. Eastcott L, Shiu WY, Mackay D. Environmentally relevant physical-chemical properties of hydrocarbons: A review of data and development of simple correlations. Oil Chemical Pollution 1988; 4: 191-216.
25. Plyasunov AV, Shock EL. Thermodynamic functions of hydration of hydrocarbons at 298.15 K and 0.1 MPa. Geoch Cos A 2000; 64: 439-68.
26. Ferguson AL, Debenedetti PG, Panagiotopoulous AZ. Solubility and molecular conformations of n-alkane chains in water. J Phys Chem B 2009; 113: 6405-14.
27. Washburn EW. International Critical Tables of Numerical Data Physics,Chemistry and Technology. 1st edition. New York: McGRAW-HILL; 1929.
28. Hayduk W, Laudie H. Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE J 1974; 20: 611-5.

Chapter 3 Reference:
1. Kabal'nov AS, Shikubin ED, Ostwald ripening theory: applications to fluorocarbon emulsion stability, Adv Colloid Interface Sci, 1992; 38: 69–97.
2. Taylor P, Ostwald ripening in emulsions, Colloid Surf A-Physicochem Eng Asp, 1995; 99: 175-85.
3. Taylor P, Ostwald ripening in emulsions, Adv Colloid Interface Sci, 1998; 75: 107-63.
4. Higuchi WJ, Misra J, Physical degradation of emulsions via the molecular diffusion route and the possible prevention thereof, J Pharm Sci, 1962; 51: 459-66.
5. Ugelstad J, Mórk PC, Kaggerud KH, Ellingsen T, Berge A, Swelling of oligomer-polymer droplets. New methods of preparation, Adv Colloid Interface Sci, 1980; 13: 101-40.
6. Barnette DT, Schork FJ, Continuous miniemulsion polymerization, Chem Eng Prog, 1987; 83: 25-30.
7. Reimers J, Schork FJ, Robust nucleation in polymer-stabilized miniemulsion polymerization, J Appl Polym Sci, 1996; 59: 1833-41.
8. Reimers J, Schork FJ, Predominant droplet nucleation in emulsion polymerization, J Appl Polym Sci, 1996; 60: 251-62.
9. Lin CT, Wu JM, Chern CS, Effects of the molecular weight of polymeric costabilizers on the Ostwald ripening behavior and the polymerization kinetics of styrene miniemulsions, Colloid Surf A-Physicochem Eng Asp, 2013; 434: 178-84.
10. Lin CT, Chern CS, Modeling Ostwald ripening rate of styrene miniemulsions stabilized by a homolog of n-alkane costabilizers, J Taiwan Inst Chem Eng, Available online 26 December 2014.
11. Morton M, Kaizerman S, Altier MW, Swelling of latex particles, J Colloid Sci, 1954; 9: 300-12.
12. Flory PJ, Principles of Polymer Science, Cornell University Press, Ithaca, New York, 1953.
13. Noel LFJ, Maxwell IA, German AL, Partial swelling of latex particles by two monomers, Macromolecules, 1993; 26: 2911-8.
14. Johnson CA, Generalization of the Gibbs-Thomson equation, Surf Sci, 1965; 3: 429-44.
15. Skinner LM, Sambles JR, The Kelvin equation—a review, J Aerosol Sci, 1972; 3: 199-210.
16. Sperling LH, Introduction to physical polymer science, 4th ed.,John Wiley & Sons, Inc., United States of Americ, 2006.
17. Kabal'nov AS, Pertzov AV, Shikubin ED, Ostwald ripening in two-component disperse phase systems: application to emulsion stability, Colloid Surf, 1987; 24: 19-32.
18. Kabalnov A, Ostwald ripening and related phenomena, J Dispersion Sci Technol, 2001; 22: 1-12.
19. Pertzov AV, Kabal'nov AS, Shchukin ED. Recondensation of particles of a two-component disperse phase in the case of a large difference in the solubility of the components in the dispersion medium, Colloid J USSR, 1984; 46: 1015-8.
20. Lifshitz IM, Slozov VV. The Kinetics of Precipitation from Supersaturated Solid Solution. J Phys Chem Solids 1961; 19: 35-50.
21. Senyek ML, Kulig JJ, Paker DK, The Goodyer Tire and Rubber Co. US Patent 6, 369, 158, 2002.
22. Rehfeld SJ, Adsorption of sodium dodecyl sulfate at various hydrocarbon-water interfaces, J. Phys. Chem. A, 1967; 71: 738-45.
23. Sutterlin, N. in Polymer Colloids II, ed. by Fitch R.M., Plenum Press, New York, 1980 p. 583.
24. Chern CS, Chen TJ, Effect of Ostwald ripening on styrene miniemulsion stabilized by reactive cosurfactants, Colloid Surf A-Physicochem Eng Asp, 1998; 138: 65-74.
25. Meliana Y, Cala NA, Lin CT, Chern CS. Ostwald Ripening of Two-Component Disperse Phase Miniemulsions Containing Monomer and Reactive Costabilizer. J Disper Sci Technol 2010; 31: 1568-73.
26. Brandrup J, Immergut EH, Grulke EA, Polymer Handbook, 4th ed., Wiley-Interscience, New York, 1999.
27. Tauer K. Stability of monomer emulsion droplets and implications for polymerizations therein. Polymer 2005; 46: 1385-94.
28. Porter DA, Easterling KE, Phase Transformations in Metals and Alloys. 2nd edition. London: Chapman & Hall; 1992.
29. Mark JE, Physical Properties of Polymers Handbook, AIP Press, New York, 1996.

Chapter 4 Reference:
1.Capek I., Chern C.S., Radical Polymerization in Direct Mini-Emulsion Systems, Advances in Polymer Science 155 (2001) 101-165.
2.Antonietti M., Landfester K., Polyreactions in miniemulsions, Progress in Polymer Science 27 (2002) 689-757.
3.Asua J.M., Miniemulsion Polymerization, Progress in Polymer Science 27 (2002) 1283-1346.
4.Chern C.S. Principles and Applications of Emulsion Polymerization, Wiley, New Jersey, 2008 Chapter 5.
5.Higuchi W.I., Misra J., Physical degradation of emulsions via the molecular diffusion route and the possible prevention thereof, Journal of Pharmaceutical Sciences 51 (1962) 459-466.
6.Kabalnov A.S., Shikubin E.D., Ostwald Ripening Theory: Applications to Fluorocarbon Emulsion Stability, Advances in Colloid and Interface Science 38 (1992) 69-97.
7.Taylor P., Ostwald ripening in emulsions, Colloids and Surfaces A:Physicochemical and Engineering Aspects 99 (1995) 175-185.
8.Taylor P., Ostwald ripening in emulsions, Advances in Colloid and Interface Science 75 (1998)107-163.
9.Webster A.J., Cates M.E., Stabilization of Emulsion by Trapped Species, Langmuir 14 (1998) 2068-2079.
10.Weers J.G., Molecular diffusion in emulsions and emulsion mixtures; Binks B.P., Editor, Modern Aspects of Emulsion Science, The Royal Society of Chemistry, Cambridge, UK, 1998 pp. 292-327.
11.Kabal’nov A.S., Pertzov A.V., Shchukin E.D., Ostwald ripening in two-component disperse phase systems: Application to emulsion stability, Colloids and Surfaces 24 (1987) 19-32.
12.Meliana Y., Cala N.A., Lin C.T., Chern C.S., Ostwald Ripening of Two-Component Disperse Phase Miniemulsions Containing Monomer and Reactive Costabilizer, Journal of Dispersion Science and Technology 31 (2010) 1568-1573.
13.Wang S., Schork, F.J., Miniemulsion polymerization of vinyl acetate with nonionic surfactant, Journal of Applied Polymer Science 54 (1994) 2157-2164.
14.Miller, C.M., Blythe, P.J., Sudol, E.D., Silebi, C.A., El-Aasser, M.S., Effect of the presence of polymer in miniemulsion droplets on the kinetics of polymerization , Journal of Polymer Science Part A: Polymer Chemistry 32 (1994) 2365-2376.
15.Miller, C.M., Sudol, E.D., Silebi, C.A., El-Aasser, M.S., Polymerization of miniemulsions prepared from polystyrene in styrene solutions. 1. Benchmarks and limits, Macromolecules 28 (1995) 2754-2764.
16.Miller, C.M., Sudol, E.D., Silebi, C.A., El-Aasser, M.S., Polymerization of miniemulsions prepared from polystyrene in styrene solutions. 2. Kinetics and mechanism, Macromolecules 28 (1995) 2765-2771.
17.Miller, C.M., Sudol, E.D., Silebi, C.A., El-Aasser, M.S., Polymerization of miniemulsions prepared from polystyrene in styrene solutions. 3. Potential differences between miniemulsion droplets and polymer particles, Macromolecules 28 (1995) 2772-2780.
18.Reimers, J., Schork, F.J., Robust nucleation in polymer-stabilized miniemulsion polymerization, Journal of Applied Polymer Science 59 (1996) 1833-1841.
19.Reimers, J., Schork, F.J., Predominant droplet nucleation in emulsion polymerization, Journal of Applied Polymer Science 60 (1996) 251-262.
20.Meliana, Y., Lin, C.T., Suprianti, L., Huang, Y.J., Chern, C.S., Characterization of Costabilizers in Retarding Ostwald Ripening of Monomer Miniemulsions, Journal of Dispersion Science and Technology 33 (2012) 1346-1353.
21.Sperling, L.H. Introduction to Physical Polymer Science, 4th ed., Wiley-Interscience, New York, 2006 p. 537.
22.Rehfeld, S.J., Adsorption of sodium dodecyl sulfate at various hydrocarbon-water interfaces, The Journal of Physical Chemistry 71 (1967) 738-745.
23.Sutterlin, N. in Polymer Colloids II, ed. by Fitch R.M., Plenum Press, New York, 1980 p. 583.
24.Chern, C.S., Chen, T.J., Miniemulsion polymerization of styrene using alkyl methacrylates as the reactive cosurfactant, Colloid and Polymer Science 275 (1997) 546-554.
25.Chern, C.S., Chen, T.J., Effect of Ostwald ripening on styrene miniemulsion stabilized by reactive cosurfactants, Colloids and Surfaces A: Physicochemical and Engineering Aspects 138 (1998) 65-74.
26.Brandrup, J., Immergut, E.H., Grulke, E.A., Polymer Handbook, 4th ed., Wiley-Interscience, New York, 1999.
27.Tauer, K., Stability of monomer emulsion droplets and implications for polymerizations therein, Polymer 46 (2005) 1385-1394.
28.Krevelen, D.W.V., Properties of Polymers: Their Correlation with Chemical Structure, Their Numerical Estimation and Prediction from Additive Group Contributions, 3rd ed., Elsevier, Amsterdam, 1990 pp. 293, 322, 323.
29.Chern, C.S., Chen, T.J., Miniemulsion polymerization of styrene stabilized by nonionic surfactant and reactive cosurfactant, Colloid and Polymer Science 275 (1997) 1060-1067.
30.Chern, C.S., Liou, Y.C., Chen, T.J., Particle nucleation loci in styrene miniemulsion polymerization using alkyl methacrylates as the reactive cosurfactant, Macromolecular Chemistry and Physics 199 (1998) 1315-1322.
31.Chern, C.S., Liou, Y.C., Effects of mixed surfactants on the styrene miniemulsion polymerization in the presence of an alkyl methacrylate, Macromolecular Chemistry and Physics 199 (1998) 2051-2061.
32.Chern, C.S., Liou, Y.C., Kinetics of styrene miniemulsion polymerization stabilized by nonionic surfactant/alkyl methacrylate, Polymer 40 (1999) 3763-3772.
33.Harkins, W.D., A General Theory of the Reaction Loci in Emulsion Polymerization, Journal of Chemical Physics 13 (1945) 381-382.
34.Harkins, W.D., A General Theory of the Reaction Loci in Emulsion Polymerization. II, Journal of Chemical Physics 14 (1946) 47-48.
35.Harkins, W.D., A General Theory of the Mechanism of Emulsion Polymerization1 , Journal of the American Chemical Society 69 (1947) 1428-1444.
36.Smith, W.V., The Kinetics of Styrene Emulsion Polymerization1a, Journal of the American Chemical Society 70 (1948) 3695-3702.
37.Smith, W.V., Ewart, R.H., Kinetics of Emulsion Polymerization, Journal of Chemical Physics 16 (1948) 592-599.
38.Smith, W.V., Chain Initiation in Styrene Emulsion Polymerization, Journal of the American Chemical Society 71 (1949) 4077-4082.
39.Priest, W.J., Partice Growth in the Aqueous Polymerization of Vinyl Acetate, The Journal of Physical Chemistry 56 (1952) 1077-1082.
40.Roe, C.P., Surface Chemistry Aspects of Emulsion Polymerization, Industrial & Engineering Chemistry 60 (1968) 20-33.
41.Fitch, R.M., Tsai, C.H. in Polymer Colloids, ed. by Fitch R.M., Plenum Press, New York, 1971 p. 73, 103.
42.Fitch, R.M., The homogeneous nucleation of polymer colloids, British Polymer Journal 5 (1973) 467-483.
43.Trommsdorf, E., Kohle, H., Lagally, P., Zur polymerisation des methacrylsäuremethylesters, Die Makromolekulare Chemie 1 (1948) 169-198.
44.Hamielec, A.E., Friis, N. Am. Chem. Soc. Symp. Ser. 24, American Chemical Society,Washington D. C., 1976 p. 82.

Chapter 5 Reference:
1. K. Matyjaszewski and T. P. Davis, in Handbook of Radical Polymerization, John Wiley & Sons, Inc., Hoboken, New Jersey, 2003, Chapter 8, p. 361.
2. K. Matyjaszewski and J. Spanswick, Mater. Today, 8, 26 (2005).
3. V. Coessens, T. Pintauer and K. Matyjaszewski, Prog. Polym. Sc., 26, 337 (2001).
4. J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes and B. Charleux, Prog. Polym. Sci., 38, 63 (2013).
5. G. Moad, E. Rizzardo and S. H. Thang, Polymer, 49, 1079 (2008).
6. P. Ganjeh-Anzabi, V. Haddadi-Asl, M. Salami-Kalajahi and M. Abdollahi, J. Polym. Res., 20, 248 (2013).
7. J. Ma and H. Zhang, J. Polym. Res., 21, 614 (2014).
8. M. Lansalot, C. Farcet, B. Charleux and J. P. Vairon, Macromolecules, 32, 7354 (1999).
9. G. Moad, E. Rizzardo and S. H. Thang, Aust. J. Chem., 58, 379 (2005).
10. L. Barner, T. P. Davis, M. H. Stenzel and C. Barner-Kowollik, Macromol. Rapid Commun., 28, 539 (2007).
11. A. B. Lowea and C. L. McCormick, Prog. Polym. Sci., 32, 283 (2007).
12. J. B. McLeary and B. Klumperman, Soft Matter, 2, 45 (2006).
13. J. Qiu, B. Charleux and K. Matyjaszewski, Prog. Polym. Sci., 26, 2083 (2001).
14. K. Matyjaszewski and T. P. Davis, in Handbook of Radical Polymerization, John Wiley & Sons, Inc., Hoboken, New Jersey, 2003, Chapter 12, p. 629.
15. J. Chiefari, Y. K. (Bill) Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo and S. H. Thang. Macromolecules, 31, 5559 (1998).
16. R. T. A. Mayadunne, J. Jeffery, G. Moad and E. Rizzardo, Macromolecules, 36, 1505 (2003).
17. V. Mishra and R. Kumar, Journal of Scientific Research, 56, 141 (2012).
18. M. Antonietti and K. Landfester, Prog. Polym. Sci., 27, 689 (2002).
19. A. Butte, G. Storti and M. Morbidelli, Macromolecules, 33, 3485 (2000).
20. M. J. Monteiro and J. D. Barbeyrac, Macromolecules, 34, 4416 (2001).
21. I. Uzulina, S. Kanagasabapathy and J. Claverie, Macromolecular Symposia, 150, 33 (2000).
22. M. J. Monteiro, M. Hodgson and H. D. Brouwer, J. Polym. Sci. Pol. Chem., 38, 3864 (2000).
23. G. Moad, J. Chiefari, Y. K. (Bill) Chong, J. Krstina, R. T. A. Mayadunne, A. Postma, E. Rizzardo and S. H. Thang, Polym. Int., 49, 993 (2000).
24. C. S. Chern, in Miniemulsion Polymerization. Principles and Applications of Emulsion Polymerization, John Wiley & Sons, Inc., Hoboken, New Jersey, 2008, p. 128.
25. J. M. Asua, Prog. Polym. Sci., 27, 1283 (2002).
26. C. S. Chern and Y. C. Liou, J. Polym. Sci. Pol. Chem., 37, 2537 (1999).
27. M. Lin, J. C. C. Hsu and M. F. Cunningham, J. Polym. Sci. Pol. Chem., 44, 5974 (2006).
28. C. S. Chern and H. T. Chang, Polym. Int., 51, 1428 (2002).
29. J. L. Remiers and F. J. Schork, J. Appl. Polym. Sci., 59, 1833 (1996).
30. J. L. Remiers and F. J. Schork, J. Appl. Polym. Sci., 60, 251 (1996).
31. M. L. Senyek, J. J. Kulig and D. K. Paker, The Goodyer Tire and Rubber Co. US Pstent 6, 369, 158, 2002.
32. H. Vale and T. Mckenna, Colloid Surf. A-Physicochem. Eng. Asp., 268, 68 (2005).
33. L. J. Chen, S. Y. Lin, C. S. Chern and S. C. Wu, Colloid Surf. A-Physicochem. Eng. Asp., 122, 161 (1997).
34. M. Morton, J. Colloid Interface Sci., 9, 300 (1954).
35. C. T. Lin, J. M. Wu and C. S. Chern, Colloid Surf. A-Physicochem. Eng. Asp., 434, 178 (2013).
36. I.M. Lifshitz and V.V. Slozov, Zh. Exp. Thor. Fiz. (in Russian), 35, 479 (1958).
37. A.S. Kabalnov, A.V. Pertzov and E.D. Shchukin, Colloid and Surface, 24, 19 (1987).
38. C. S. Chern, Y. C. Liou, and T. J. Chen, Macromol. Chem. Phys., 199, 1315 (1998).
39. C. S. Chern, T. J. Chen, and Y. C. Liou, Polymer, 39, 3767 (1998).
40. C. S. Chern and Y. C. Liou, Macromol. Chem. Phys., 199, 2051 (1998).
41. H. C. Chang, Y. Y. Lin, C. S. Chern, and S. Y. Lin, Langmuir, 14, 6632 (1998).
42. J. A. Alduncin, J. F. Forcada, M. J. Barandiaran, and J. Asua, J. Polym. Sci., Part A: Polym. Chem., 29, 1265 (1991).
43. M. Nomura, J. Ikoma, and K. Fujita, J. Polym. Sci., Part A: Polym. Chem., 31, 2103 (1993).
44. J. Bandrup, E.H. Inmergut and E.A. Grulke, Polymer Handbook, 4th edition, Wiley, Hoboken, New Jersey, 1998.
45. J. Sestak and G. Berggern, Thermochim. Acta, 3, 1 (1971).
46. S. Vyazovkin, A.K. Burmham, J.M. Criado, L.A. Perez-Maqueda, C. Popescu and N. Sbirrazzuoli, Thermochim. Acta, 520, 1 (2011).
47. A. Khawam and D. R. Fanagan, J. Phys. Chem. B, 110, 17315 (2006).
48. S. Vyazovkin and N. Sbirrazzuoli, Macromol. Rapid Commun., 27, 1515 (2006).
49. J. G. Tsavalas, F. J. Schork, H. d. Brouwer and M. J. Monteiro. Macromolecules, 34, 3938 (2001).

QR CODE