簡易檢索 / 詳目顯示

研究生: 巫權峰
CHUAN-FENG WU
論文名稱: 具三角波控制之低切換突波及低諧波量降壓型轉換器
Low Spur and Harmonic Buck Converter with Triangular-Wave Control
指導教授: 羅有綱
Yu-Kang Lo
劉邦榮
Pang-Jung Liu
邱煌仁
Huang-Jen Chiu
口試委員: 林忠義
None
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 96
中文關鍵詞: 直流-直流轉換器三角波跳頻低諧波量電流模式脈波寬度調變
外文關鍵詞: dc-dc converter, triangular wave, frequency hopping, spur reduction, current mode, PWM
相關次數: 點閱:198下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文採用三角波隨機跳頻機制,實現低切換突波與低諧波量降壓型轉換器電路。除了分析鋸齒波和三角波與電感電流的關係外,並將兩者整合在電路裡面,比較輸出電壓的變化量。利用隨機跳頻的機制來降低諧波量,並比較八個頻率與單一頻率的輸出電壓頻譜。此低諧波量降壓型轉換器電路將功率電晶體也一併整合於晶片之中,以減少PCB面積與成本。
本論文晶片以TSMC 0.35 μm Mixed-Signal 2P4M Polycide 3.3/5 V製程實現。規格如下:輸入電壓為5 V,輸出電壓為2.5 V,操作頻率範圍為1.5 MHz ~ 3.25 MHz,輸出最大負載電流為500 mA。根據模擬結果,使用本論文所提出的三角波跳頻機制電路,直流-直流轉換器的輸出電壓諧波量在八個跳頻頻率的情況下比單一頻率降低約27 dB。使用鋸齒波從低頻跳到高頻的輸出電壓變化量和回復時間為42 mV和70 μs,而高頻跳到低頻分別為45 mV和92 μs。三角波從低頻跳到高頻的輸出電壓變化量和回復時間為28 mV和47 μs,而高頻跳到低頻分別為36 mV和30 μs。三角波的輸出電壓變化量與回復時間都優於鋸齒波的數值。


This thesis introduces a random frequency hopping with triangle-wave control to implement a buck converter with spur and harmonic reduction. The sawtooth-wave and triangle-wave are analyzed the relation with the inductor current, and are integrated into the converter to compare the variation of output voltage further. A random frequency hopping scheme is used to reduce harmonics, and the frequency spectrum of the output voltage is compared with eight and single switching frequencies. The power MOSFET are integrated into the chip of spur reduction design of a buck converter for decreasing the PCB area and cost.
The chip is implemented with TSMC 0.35 μm 2P4M CMOS process. The specifications are as follows: the input voltage is 5 V, output voltage is 2.5 V, the operating frequency is from 1.5 MHz to 3.25 MHz, and the maximum output current is 500 mA. To compare with eight and single switching frequencies, the proposed frequency hopping circuit can suppress the output harmonics by 27 dB from simulation results.
When switching frequency is from low to high with the sawtooth wave, the variation of the output voltage is 42 mV and the recovery time is 70 μs. The variation of the output voltage is 45 mV and the recovery time is 92 μs when switching frequency hops from 3.25 MHz to 1.5 MHz. Similarly, when switching frequency is from low to high with the triangle wave, the variation of the output voltage is 28 mV and recovery time is 47 μs. The variation of the output voltage is 36 mV and the recovery time is 30 μs when switching frequency hops from 3.25 MHz to 1.5 MHz. The output voltage variation and recovery time with the triangle wave are better than those of the sawtooth wave.

摘 要 i Abstract ii 目 錄 iv 圖索引 vi 表索引 x 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 1 1.3 論文概述 2 第二章 直流對直流轉換器概論 4 2.1 切換式降壓型轉換器簡介 4 2.2 控制模式分類 7 2.2.1 電壓模式控制 7 2.2.2 電流模式控制 9 第三章 三角波跳頻機制與原理分析 11 3.1 跳頻技術比較 11 3.2 跳頻方式考量 16 第四章 降壓型轉換器 20 4.1 系統架構概說 20 4.2 跳頻控制電路 21 4.2.1 三角波產生器 21 4.2.2 除頻/計數器 25 4.2.3 線性回授移位暫存器 26 4.2.4 解碼器 29 4.3 電感電流偵測與斜率補償器 31 4.4 誤差放大器 35 4.5 遲滯比較器 37 4.6 功率電晶體驅動器 39 第五章 電路模擬結果 42 5.1 鋸齒波與三角波輸出電壓模擬 42 5.2 單頻率輸出電壓模擬 59 5.3 八頻率輸出電壓模擬 63 5.4 負載調節率 68 第六章 晶片量測結果 71 6.1 晶片佈局平面圖 71 6.2 晶片腳位功能說明 74 6.3 量測設置 76 6.4 量測結果 77 6.5 文獻比較與討論 80 第七章 結論與未來展望 81 參考文獻 82

[1] E. J. Kim, C. H. Cho, and W. Kim, “Spurious Noise Reduction by Modulating Switching Frequency in DC-to-DC Converter for RF Power Amplifier” IEEE RFIC Symposium, pp. 43-46, May 2010.
[2] S. K. Dunlap and T. S. Fiez, “A Noise-Shaped Switching Power Supply Using a Delta–Sigma Modulator,” IEEE TCAS-I, vol.51, no.6, pp. 1051–1061, Jun. 2004.
[3] C. Tao and A. A. Fayed, “A Buck Converter with Reduced Output Spurs Using Asynchronous Frequency Hopping” IEEE Transactions on Circuits and Systems II: Express Briefs, vol.58, no.11, pp. 709-713, Nov. 2011.
[4] N. Y. Ho and P. K. T. Mok, “Ramp Signal Generation in Voltage Mode CCM Random Switching Frequency Buck Converter for Conductive EMI Reduction,” IEEE Custom Integrated Circuits Conference, pp. 1-4, Sep. 2010.
[5] P. J. Liu, J. N. Tai, H. S Chen, J. H Chen, and Y. J. Chen, “Spur-Reduction Design of Frequency-Hopping DC–DC Converters,” IEEE Transactions on Power Electronics, vol.27, no.11, pp. 4763-4771, Nov. 2012.
[6] J. N. Kitchen, I. Deligoz, S. Kiaei, and B. Bakkaloglu, “Polar SiGe Class E and F Amplifiers Using Switch-Mode Supply Modulation,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 5, pp. 845–856, May 2007.
[7] 梁適安,「交換式電源供應器之理論與實務設計」,二版,全華科技圖書,第1-104頁,2008年。
[8] J. S. Lee, M. S. Keel, S. I. Lim, and S. Kim, “Charge Pump with Perfect Current Matching Characteristics in Phase-Locked Loops,” Electronics Letters 9th, vol. 36, no. 23, Nov. 2000.
[9] T. W. Liao, J. R. Su, and C. C. Hung, “Spur-Reduction Frequency Synthesizer Exploiting Randomly Selected PFD,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 3, Mar. 2013.
[10] 楊豐瑞、陳福春,「數位邏輯設計」,旗標出版股份有限公司,第2-2-7-46頁,2006年。
[11] N. Y. Ho and P. K. T. Mok, "Design of PWM Ramp Signal in Voltage-Mode CCM Random Switching Frequency Buck Converter for Conductive EMI Reduction," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 2, pp. 505-515, Feb. 2013.
[12] C. Tao and A. A. Fayed, "Analysis and Modelling of Buck Converters Output Spectrum in CCM with PWM Control," IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1-4, Aug. 2011.
[13] J. H. Chen, P. J. Liu, and Y. J. Chen, "A Spurious Emission Reduction Technique for Power Amplifiers Using Frequency Hopping DC-DC Converters," IEEE RFIC Symposium, pp. 145-148, Jun. 2009.
[14] J. N. Kitchen, C. Chu, S. Kiaei, and B. Bakkaloglu, "Combined Linear and Δ-Modulated Switch-Mode PA Supply Modulator for Polar Transmitters," IEEE Journal of Solid-State Circuits, vol. 44, no. 2, pp. 404-413, Feb. 2009.
[15] J. W. Xiao, A. Peterchev, and J. S. Sanders, “An Ultra-Low-Power Digitally-Controlled Buck Converter IC for Cellular Phone Applications,” in Proc. IEEE Applied Power Electronics Conference and Exposition, vol. 1,pp. 383-391, 2004.
[16] C. F. Lee and P. K. T. Mok, “A Monolithic Current-Mode CMOS DC-DC Converter with On-Chip Current Sensing Technique,” IEEE J.Solid-State Circuit, vol. 39, issue 1, pp. 3-14, Jan. 2004.
[17] C. Chang, “Robust Control of DC-DC Converters: The Buck Converter”, in Proc. IEEE Power Electronics Specialists Conference, vol. 2, pp. 1094-1097, Jun. 1995.
[18] B. Razavi, “Design of Analog CMOS Integrated Circuits,” Boston, MA, McGraw-Hill College, pp. 1-684, Aug. 2000.
[19] C. Tao and A. A. Fayed, “Spurious-Noise-Free Buck Regulator for Direct Powering of Analog/RF Loads Using PWM Control with Random Frequency Hopping and Random Phase Chopping,” in Proc. IEEE ISSCC, pp. 396–397, Feb. 2011.
[20] P. E. Allen and D. R. Holberg, “CMOS Analog Circuit Design,” 2 edition, USA: Oxford University Press, pp. 1-250, Jan. 2002.
[21] K. K. Tse, H. S. H. Chung, S. Y. Huo, and H. C. So, “Analysis and Spectral Characteristics of a Spread-Spectrum Technique for Conducted EMI Suppression,” IEEE Transactions on Power Electronics, vol. 15, no. 2, Mar. 2000.

無法下載圖示 全文公開日期 2018/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE