簡易檢索 / 詳目顯示

研究生: Sally Fahdarina
Sally - Fahdarina
論文名稱: 凹面光柵於密分波多工器應用之通帶平坦化與降低串擾現象的設計與研究
The Planar Concave Grating Design Study for Passband Flattening and Crosstalk Reduction in DWDM Applications
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 張勝良
Sheng-Lyang Jang
黃柏仁
Bohr-Ran Huang
林保宏
Pao-Hung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 76
中文關鍵詞: 多波分工器焦點偏移低相鄰通道串擾平坦傳輸頻帶
外文關鍵詞: flat passband, focal point shifting, DWDM, low adjacent channel crosstalk.
相關次數: 點閱:216下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

作為傳遞訊息鏈上的一個元件,密分波多公具有耦合數個特定波長輸入訊號(多公器)和再將訊號分成多個輸出(解多公器)的亮眼表現。密分波多公顧名思義就是擁有較密集的通道間距,這樣的設計是被認為能夠克服當前對巨大數據容量的需求。然而這樣的設計也會有高鄰近通道串擾和高成本的作業系統的後果。我們相信在密分波多工元件中的每個通道都設計成皆為平頂帶寬傳遞通帶,這樣能緩解對於波長需要非常精準以及偏振的需求。因此,在不需要使要波長精準雷射光源的情況下,花費就能有效率的減少。考慮到其關鍵的功能,在這篇論文中的研究重點是如何設計出一個具有低的傳輸損耗、低串擾並具有平頂帶寬傳遞通帶的1x5之密分波多工。所有的模擬皆是使用Photon Design的商業軟體,利用其中的兩套軟體FIMMWAVE和EPIPPROP互相搭配來得到模擬結果。
在設計密分波多工之前,經過觀察,發現了對降低相鄰通道串擾具有顯著影響的參數,進行初步研究以實現優化之目的。各個輸出波導是沿著羅蘭(Rowland)圓作為擺放設計,藉由調整這些波導的位置來觀察對減少串擾的影響。結果顯示出,將波導設計在羅蘭圓上角度較高的位置能有效的減少波導線寬和相鄰通道的串擾。再進一步模擬,發現使用較窄的波導線寬和啁啾型的光柵都同樣能顯著地降低雜訊。
現今有很多種方式已經被發表是產生出低傳輸損耗和低相鄰通道串擾的平頂帶寬傳遞通帶。一般來說,可以藉由波導的幾何形狀或調整光柵焦點以達到平頂帶寬傳遞通帶。本論文中,我們將光柵面的原始方向多轉了一個角度來達到平頂帶寬的通帶。藉由此方式,衍射光的焦點將會產生位移,此時輸出波導中的模會因為位移的訊號和原本的訊號產生傅立葉轉換中的折積(Convolution)現象,進而產生出平頂帶寬的通帶。然而此技術到目前為止依然有較高的傳輸損耗問題尚未解決。這次所提出的方式也有與傳統使用多模干涉儀耦合器所產生出之平頂帶寬結果作比較,轉光柵面角度相較於多模干涉儀耦合器是前者方式具有較好的通道隔離度(±39 dB),我們在其中使用較窄的線寬於入射波導的條件是不適用於多模干涉儀耦合器的設計。


DWDM (Dense Wavelength Division Multiplexing) owns a promising performance in coupling many numbers of input signals with the certain designated wavelength (multiplexing) and splitting them again into several outputs (de-multiplexing). The dense channel spacing of DWDM is capable of overcoming the massive demand of data capacity needs nowadays. However, this easily causes high adjacent channel crosstalk. It is believed that the flat transmission passband of each channels in DWDM device would relax the need of precise equipment and polarization performance. Thus, the flat passband would effectively reduce the operational cost. In consideration of its critical functions, this thesis will focus on how to develop 1x5 DWDM with low insertion loss, low crosstalk, and flat passband transmission. All simulations were run through Photon Design commercial software, EPIPPROP collaborated with FIMMPROP.
At beginning, the study was conducted to optimize the parameters that have significant impact in reducing the adjacent channel crosstalk. Various output waveguide position along the Rowland circle was tuned to observe its effect in crosstalk reduction. The results showed that putting the waveguides at the higher angle position of Rowland circle would effectively reduce the channel linewidth and the adjacent channel crosstalk as well. Then further simulation showed that using the narrow waveguide width and chirped grating also offer a significant noise floor reduction.
Several techniques have been proposed to obtain the flat passband transmission with low insertion loss and low adjacent channel crosstalk. In general, one can modify the waveguide geometry or tune the grating focal point to flatten the passband transmission. In this thesis, a new approach of passband flattening have been simulated by intentionally tilting the grating facet more to the certain degree. By such, the focal point of diffracted light would be shifted and result in a flat passband once it is convoluted by the output waveguide mode. However, this technique still suffer from high insertion loss. This proposed approach performance was also compared to the MMI coupler method that has been widely utilized in the passband flattening and demonstrated a better channel isolation (± 39 dB) by using narrow width on the input waveguide, which cannot be implemented in the MMI coupler method.

ABSTRACT - i 摘要 - iii ACKNOWLEDGEMENT - v CONTENTS - vi LIST OF FIGURES - viii LIST OF TABLES - x CHAPTER 1 : INTRODUCTION - 1 1.1 Overview - 1 1.2 Research Objectives - 4 CHAPTER 2 : LITERATURE REVIEW - 5 2.1 Silicon photonic wire waveguide - 5 2.2 Wavelength Division Multiplexing (WDM) - 6 2.2.1 Definitions of demultiplexer parameters - 9 2.3 Planar Concave Grating (PCG) - 10 2.3.1 Overview - 10 2.3.2 PCG optimization - 12 2.4 Distributed Bragg Grating (DBR) - 17 CHAPTER 3 : VALIDATION DATA - 20 3.1 Multimode Interference (MMI) method for broadening and flattening the transmission spectrum - 20 3.2 Distributed Bragg Reflector (DBR) grating as the high reflector of light - 26 CHAPTER 4 : ADJACENT CHANNEL CROSSTALK STUDY - 32 4.1 Simulation design - 32 4.2 Observed variables - 35 4.3 Simulation result - 35 4.3.1 The output waveguide position effect to the linewidth variable - 35 4.3.2 The output waveguide position effect to the adjacent channel crosstalk - 38 4.4 Summary - 39 CHAPTER 5 : PASSBAND FLATTENING METHOD - 40 5.1 PCG Design - 40 5.2 DBR simulation - 42 5.2.1 Period Scanning - 42 5.2.2 Numbers of period scanning - 43 5.2.3 Loss comparison - 43 5.3 Simulation Result - 46 5.3.1 1x5 DWDM with Gaussian passband - 46 5.3.2 Tilting grating facet method to flatten the passband - 47 5.3.3 Waveguide width study to enhance the insertion loss and crosstalk - 50 5.3.4 Performance comparison to the existing technology - 55 5.4 Summary - 56 CHAPTER 6 : CONCLUSION AND FUTURE WORKS - 57 5.1 Conclusion - 57 5.2 Future works - 57 REFERENCES - 59

[1] Dominik Bischoff, “Wavelength multiplexing: WDM and DWDM systems,” 2009.
[2] Cisco Systems, “Introduction to DWDM Technology,” Cisco Systems, Inc., San Jose, USA, 2001.
[3] D. Feng, W. Qian, H. Liang, C.-C. Kung, J. Fong, B. J. Luff and M. Asghari, “Fabrication insensitive Echelle grating in silicon-on-insulator platform,” IEEE Photonics Technology Letters, vol. 23, no. 5, pp. 284-286, 2011.
[4] S. Robinson, S. Jasmine and R. Pavithra, “Investigation on hybrid WDM (DWDM+CWDM) free space optical communication system,” ICTACT Journal on Communication Technology, vol. 06, no. 04, pp. 1187-1192, Dec. 1998.
[5] Z. Shi and S. He, "A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer," IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 6, pp. 1179-1185, 2002.
[6] Md. Surat-E-Mostafa, Md. Muksudul Alam, Md. Al Faisal Reza, “Crosstalk effect in a transmission line for dense wavelength division multiplexing (DWDM) system,” International Journal of Scientific & Technology Research, vol. 2, pp. 237-240, 2013.
[7] Jian-Jun He, Boris Lamontagne, Andre Delage, Lynden Erickson, Michael Davies, and Emil S. Koteles, “Monolithic Integrated Wavelength Demultiplexer Based on a Waveguide Rowland Circle Grating in InGaAsP/InP,” Journal of Lightwave Technology, vol. 16, no. 4, pp. 631-638, 1998.
[8] H. Li, Y. Bai, X. Dong, E. Li and Y. Li , "Optimal design of an ultrasmall SOI-based 1 x 8 flat-top AWG by using an MMI," The Scientific World Journal, vol. 2013, pp. 1-6, 2013.
[9] S. Pathak, P. Dumon, D. Van Thourhout, W. Bogaerts, Senior, “Comparison of AWGs and Echelle Gratings for Wavelength Division Multiplexing on Silicon-on-Insulator,” IEEE Photonics Journal, vol. 6, no. 5, Oct. 2004.
[10] S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier , A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne , M. Packirisamy, M. Pearson and D. -X. Xu, “Planar waveguide Echelle grating in silica-on-silicon,” IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 503-505, 2004.
[11] P. E. Precisely, “The advantages of Echelle spectrographs for Raman spectroscopy,” Perkin Elmer, Inc. , Waltham, 2008.
[12] W. Demtroder, “Laser spectroscopy: Basic concepts and instrumentation,” Springer, Germany, 2003.
[13] Fujii, Y. Aoyama, K. and Minowa, J. “Optical demultiplexer using a silicon echelette grating,” IEEE Journal of Quantum Electron, vol. QE-16, no. 2, Feb. 1980.
[14] M. R. Amersfoort, C. R. d. Boer, F. P. G. M. v. Ham, M. K. Smit, P. Demeester, J. J. G. M. v. d. Tol and A. Kuntze, "Phased-array wavelength demultiplexer with flattened wavelength response," Electronics Letter, vol. 30, no. 4, pp. 300-302, 1994.
[15] Y. Doi, M. Ishii, S. Kamei, S. Ogawa, S. Mino, T. Shibata,Y. Hida, T. Kitagawa, and K. Kato, “Flat and high responsivity CWDM photoreceiver using silica based AWG with multimode output waveguides,” Electronics Letters, vol. 39, no. 22, pp. 1603-1604, Oct. 2003.
[16] J. B. D. Soole, M. R. Amersfoort, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel,
C. Caneau, R. Bhat, M. A. Koza, C. Youtsey, I. Adesida, “Use of Multimode Interference Coupler to Broaden The Passband of Wavelength-Dispersive Intergrated WDM Filters,” IEEE Photonics Technology Letters, vol. 8, no. 10, pp. 1340-1342, 1996.
[17] R. J. Lycett, D. F. G. Gallagher and V. J. Brulis, "Perfect Chirped Echelle Grating Wavelength Multiplexor: Design and Optimization," IEEE Photonics Journal, vol. 5, no. 2, 2013.
[18] Photon Design, EPIPPROP version 2.0.0, Oxford: Photon Design, 2013
[19] Y. P. Ho, H. Li, Y. J. Chen, “Flat Channel-Passband-Wavelength Multiplexing and Demultiplexing Devices by Multiple-Rowland-Circle Design,” IEEE Photonics Technology Letters, vol. 9, no. 3, pp. 342-344, March 1997.
[20] Soon Thor Lim, Ching Eng Png, “Flat spectral response silicon arrayed waveguide gratings via ion implantation,” Optics Express, vol. 14, no. 14, 2006.
[21] B. I. Akca, C. R. Doerr, G. Sengo, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225- channel cascaded spectrometer,” Optics Express, vol.20, no.16, pp.18313-18318, 2012.
[22] Wim Bogaerts, Shankar Kumar Selvaraja, Pieter Dumon, Joost Brouckaert,, Katrien De Vos,, Dries Van Thourhout,, and Roel Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 16, no. 1, pp. 33-34, 2010.
[23] K. Yamada, "Silicon photonic wire waveguides: Fundamentals and applications," in Silicon Photonics II: Components and Integration, Heidelberg, Springer, 2011, pp. 1-4.
[24] H. Yamada, "Si photonic wire waveguide devices," IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1371-1378, 2006.
[25] B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in silicon-on-insulator optoelectronics,” IEEE Journal of Selective Topics Quantum Electron, vol. 4, no. 6, pp. 938-947, Nov. - Dec. 1998.
[26] L. C. Kimerling, “Silicon microphotonics,” Applied Surface Science, vol. 159-160, pp. 8-13, 2000.
[27] L. Pavesi, “Will silicon be the photonic material of the third millenium?,” Journal of Physics: Condensed Matter, vol. 15, pp. R1196, 2003.
[28] G. T. Reed, “The optical age of silicon,” Nature, vol. 427, pp. 595-596, 2004.
[29] K. Okamoto, Fundamentals of optical waveguides, 2nd ed., London: Elsevier, 2006.
[30] G. T. Reed and A. P. Knights, Silicon photonics: An introduction, Chichester: John Wiley & Sons, Ltd., 2004.
[31] F. Grillot, L. Vivien, S. Laval and E. Cassan, "Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides," Journal of Ligtwave Technology, vol. 24, no. 2, pp. 891-896, 2006.
[32] H. Takahashi, "Wavelength multiplexer/demultiplexer (MUX/DEMUX in WDM)," in Encyclopedic handbook of integrated optics, Boca Raton, Taylor & Francis Group, 2006, pp. 483-486.
[33] International Telecommunication Union, "ITU-T G.671, Series G: Transmission systems and media, digital systems and networks, Transmission characteristics of optical components and subsystems," ITU, 2012.
[34] S. V. Kartalopoulos, Introduction to DWDM Technology, Murray Hill: John Wiley & Sons Inc., 2000.
[35] J. Brouckaert , W. Bogaerts, P. Dumon, D. V. Thourhout and R. Baets, "Planar concave grating demultiplexer fabricated on a nanophotonic silcon-on-insulator platform," Journal of Lightwave Technology, vol. 25, no. 5, pp. 1269-1275, 2007.
[36] C. J. Overbeck, R. R. Plamer, R. J. Stephenson and M. W. White, The concave grating spectrometer-Rowland mounting, USA: Central Scientific Company, 1941, pp. 1-4.
[37] J. James, Spectograph design fundamentals, New York: Cambridge University Press, 2007, p. 89.
[38] P. Cheben, "Wavelength dispersive planar waveguide devices: Echelle and arrayed waveguide gratings," in Optical waveguides: From theory to applied technologies, CRC Press, 2007, pp. 173-185.
[39] J.-m. Liu, Photonic Devices, New York: Cambridge University Press, 2005.
[40] E. F. Schibert, Light-emitting diodes, 2nd ed., New York: Cambridge University Press, 2006.
[41] L. B. Soldano and E. C. M. Pennings, "Optical Multi-Mode INterference Devices Based on Self-Imaging: Principles and Applications," Journal of Lightwave Technology, vol. 13, no. 4, pp. 615-627, 1995.
[42] S. Pathak, M. Vanslembrouck, P. Dumon, D. V. Thourhout and W. Bogaerts, "Optimized Silicon AWG with Flattened Spectral Response Using an MMI Aperture," Journal of Lightwave Technology, vol. 31, no. 1, pp. 87-93, 2013.
[43] J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets and D. V. Thourhout, "Planar Concave Grating Demultiplexer with High Reflective Bragg Reflector Facets," IEEE Photonics Technology Letters, vol. 20, no. 4, pp. 309-311, 2008.
[44] Heuk Park, Sae-Kyoung Kang, Jong Hyun Lee, Sangsoo Lee, “Simplified crosstalk floor representation for a design parameter of silicon AWG,” 2014 12th International Conference on Optical Internet 2014 (COIN), Jeju, 2014, pp. 1-2.
[45] Duk-Jun Kim, Jong-Moo Lee, Jung Ho Song, Junghyung Pyo and Gyungock Kim, "Crosstalk reduction of silicon nanowire AWG with shallow-etched grating arms," 2008 5th IEEE International Conference on Group IV Photonics, Cardiff, Wales, pp. 323-325, 2008.
[46] S. Sridaran and S. A. Bhave, "Nanophotonic devices on thin buried oxide silicon-on-insulator substrates," Optics Express, vol. 18, no. 4, pp. 3850-3857, 2010.
[47] T. Baehr-Jones, M. Hochberg, C. Walker, A. Scherer, “High-Q ring resonators in thin silicon-on-insulator,” Applied Physics Letters, vol. 85, no. 16, pp. 3346-3347, 2004.
[48] P. Dumon,W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricacated with deep UV lithography,” IEEE Photonics Technology Letters, vol. 16, no. 5, pp. 1328-1330, 2004.
[49] J. Song, L.-C. Chen and B.-J. Li, "A fast simulation method of silicon nanophotonic Echelle gratings and its applications in the design of on-chip spectrometers," Progress in Electromagnetics Research, vol. 141, pp. 369-382, 2013.
[50] Photon Design, EPIPPROP version 2.0.0, Oxford: Photon Design, pp. 26 & 106, 2013
[51] S. J. Jang, Y. M. Song, C. Y. Park and Y. T. Lee, "Highly tolerant a-Si distributed Bragg reflector fabricated by oblique angle deposition," Optical Materials Express, vol. 1, no. 3, pp. 451-457, 2011.
[52] Lumentum, "100 GHz Dense wavelength division multipleing optical add/drop module," Lumentum Operations LLC, 2015.

QR CODE