簡易檢索 / 詳目顯示

研究生: 蔡宗翰
Tsung-Han Tsai
論文名稱: 兩個串連房間浮力驅動通風之研究
A study of buoyancy-driven flow in two series-connected chambers
指導教授: 林怡均
Yi-Jiun Peter Lin
口試委員: 趙修武
Shiu-Wu Chau
朱佳仁
none
張倉榮
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 191
中文關鍵詞: 浮力通風推式置換式通風拉式置換式通風熱升流開口有效面積交界面
外文關鍵詞: buoyancy-driven ventilation, push-type displacement ventilation, pull-type displacement ventilation, plume, effective opening area, interface
相關次數: 點閱:250下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究目的為探討建築物室內環境運用自然浮力通風時之整體通
    風的變化, 使用壓克力模型裝設內部隔板形成兩串連房間, 搭配不同的開
    口位置及不同的開口有效面積進行實驗。建築物模型使用內部隔板將其
    區分為兩個相同大小之空間, 提供熱源之空間稱為浮力源房間, 另一空間
    則稱為無浮力源房間, 理論分析依據無浮力源房間的驅動力可將兩串連房
    間分為拉式與推式兩種置換式通風。實驗方法使用鹽水與清水模擬密度
    差異時的浮力, 建築物模型頂部裝設一鹽水噴嘴, 鹽水捲流進行的方向跟
    重力相同, 但是與熱升流進行的方向相反, 本論文除了第二章基本分析理
    論外, 都是根據實驗的方位敘述。實驗結果顯示拉式置換式通風改變無浮
    力源房間開口位置時, 對浮力源房間之交界面高度無明顯的影響, 相同條
    件對推式置換式通風則是兩房間之交界面高度皆會改變。對於兩種型式
    的置換式通風, 開口有效面積越大, 交界面至原點的距離越長; 當浮力源
    房間與中間隔板開口面積固定相等時(Af=Ai), 無浮力源房間與中間隔
    板之開口面積比越大時室內的換氣流量越大。在相同的面積比下,拉式置
    換式通風之流量大於推式置換式通風。


    The purpose of this research is to study ventilation patterns in two
    series-connected chambers. The experiment uses utilizing acrylic
    model with an interior divider to analyze different position and vari-
    ous total effective area of openings. By an interior divider, the space
    is divided into two same size rooms. The space has a heat source
    denoted as "forced-room", and the other is denoted as "unforced
    room". The study discusses that different types of ventilation in an
    indoor space which has various arrangements of ventilation openings.
    Salt water and flesh water are used to simulate the buoyancy force
    difference in experiments. A salt water source nozzle is placed at the
    top of the acrylic tank. Salt plume proceeds in the same direction
    as the gravity, but it is opposite to the thermal plume proceeding
    direction. Except for discussion in Chapter 2,the thesis presents
    and discusses the results according to the experimental orientation.
    Experimental results show that different opening arrangement in the
    unforced chamber for the pull-type displacement ventilation does not
    change the interface level in the forced chamber, but under the same
    condition the interface levels are varied in two chambers respectively
    for the push-type displacement ventilation. For those two types of
    displacement ventilation, the larger effective opening area results in
    the larger exchange flowrate. Under the circumstance of fixed open-
    ing areas of the forced chamber and interior divider, increasing the
    ratio of the unforced chamber opening area to the interior divider
    opening area can induce higher ventilation flowrate. At the same
    area ratio of the unforced chamber to the interior divider, the pull-
    type has higher ventilation flowrate than the push-type.

    目錄 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 符號索引. . . . . . . . . . . . . . . . . . . . . . . . . . . . x 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 1 緒論 1 1.1 研究動機與目的. . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 點熱源及單一房間通風相關文獻. . . . . . . . . 3 1.2.2 兩串連房間通風相關文獻. . . . . . . . . . . . 4 1.2.3 UFAD通風相關文獻. . . . . . . . . . . . . . . 6 1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . 9 2 基本分析理論 11 2.1 熱源誘導的自然對流. . . . . . . . . . . . . . . . . . . 11 2.1.1 點升流理論(point plume theory) . . . . . . . . 11 2.1.2 理論估算與實際的原點位置. . . . . . . . . . . 13 2.2 單一房間置換式通風模型. . . . . . . . . . . . . . . . . 14 2.3 兩個串連房間拉式置換式通風模型. . . . . . . . . . . . 18 2.3.1 理論推導. . . . . . . . . . . . . . . . . . . . . 18 2.3.2 單一房間與拉式置換式通風之比較. . . . . . . . 20 2.4 兩個串連房間推式置換式通風模型. . . . . . . . . . . . 20 2.4.1 理論推導. . . . . . . . . . . . . . . . . . . . . 20 2.4.2 單一房間與推式置換式通風之比較. . . . . . . . 24 2.4.3 拉式與推式置換式通風之比較. . . . . . . . . . 24 3 實驗方法 25 3.1 實驗設備. . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 實驗之模型及配置. . . . . . . . . . . . . . . . 25 3.1.2 影像處理設備. . . . . . . . . . . . . . . . . . 27 3.2 實驗探討參數與組別. . . . . . . . . . . . . . . . . . . 28 3.2.1 單一房間置換式通風組別. . . . . . . . . . . . 28 3.2.2 兩串連房間拉式置換式通風組別. . . . . . . . . 28 3.2.3 兩串連房間推式置換式通風組別. . . . . . . . . 29 3.3 實驗步驟及方法. . . . . . . . . . . . . . . . . . . . . 30 3.3.1 實驗前置. . . . . . . . . . . . . . . . . . . . . 30 3.3.2 執行步驟及過程. . . . . . . . . . . . . . . . . 31 3.4 實驗結果資料. . . . . . . . . . . . . . . . . . . . . . 31 3.4.1 影像處理. . . . . . . . . . . . . . . . . . . . . 31 3.4.2 密度量測. . . . . . . . . . . . . . . . . . . . . 31 4 實驗結果與分析 33 4.1 影像分析. . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.1 影像座標. . . . . . . . . . . . . . . . . . . . . 33 4.1.2 實驗影像處理. . . . . . . . . . . . . . . . . . 33 4.1.3 定義交界面. . . . . . . . . . . . . . . . . . . . 34 4.2 實驗影像分析之交界面. . . . . . . . . . . . . . . . . . 35 4.2.1 單一房間. . . . . . . . . . . . . . . . . . . . . 36 4.2.2 兩串連房間拉式置換式通風. . . . . . . . . . . 36 4.2.3 兩串連房間推式置換式通風. . . . . . . . . . . 37 4.2.4 換氣率(Air Change Per Hour, 簡稱ACH) 估算40 4.3 密度分析之交界面. . . . . . . . . . . . . . . . . . . . 41 4.3.1 單一房間. . . . . . . . . . . . . . . . . . . . . 41 4.3.2 兩連接房間拉式置換式通風. . . . . . . . . . . 42 4.3.3 兩連接房間推式置換式通風. . . . . . . . . . . 44 4.4 實驗結果分析與比較. . . . . . . . . . . . . . . . . . . 46 4.4.1 過去類似的實驗. . . . . . . . . . . . . . . . . 46 4.4.2 本研究實驗結果. . . . . . . . . . . . . . . . . 47 4.4.3 單一房間與拉式置換式通風. . . . . . . . . . . 51 4.4.4 拉式與推式置換式通風. . . . . . . . . . . . . . 51 5 結論與建議 55 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1.1 兩個串連房間拉式置換式通風. . . . . . . . . . 55 5.1.2 兩個串連房間推式置換式通風. . . . . . . . . . 55 5.2 建議. . . . . . . . . . . . . . . . . . . . . . . . . . . 56 參考文獻 57 作者簡歷 191

    [1] 林憲德, 高雄市政府環保局,2004, 我愛綠建築: 健康又環保的生活空間新主張, Third Nature Publishing Co;ISBN 978-957-696578-4.
    [2] Morton, B.R., Taylor, G.I. & Turner, J.S., 1956, Turbulent gravitational convection from maintained and instantaneous sources.Proceedings of the Royal Society of London 234, 1-23.
    [3] Hunt, G.R., & Kaye, N.G., 2001,Virtual origin correction for lazy turbulent plumes. J. Fluid Mech 435, 377-396.
    [4] Linden, P.F., Lane-Serff, G.F. & Smeed, D.A., 1990,Emptying filling boxes: the fluid mechanics of natural ventilation. J. Fluid Mech 212, 309-335.
    [5] Linden, P.F, 1999, The fluid mechanics of natural ventilation. J. Fluid Mech 31, 201-238.
    [6] 許志毅, 2008, 熱源高度位置與室內流場的關係。台灣科技大學碩士論文。
    [7] Lin, Y.J.P. & Linden, P.F., 2002, Buoyancy-driven ventilation between two chambers. J. Fluid Mech 463, 293-312.
    [8] Holford, J.M. & Hunt, G.R., 2003, Fundamental atrium design for natural ventilation. Building and Environment 38, 409-426.
    [9] Chenvidyakarn, T. & Woods, A.W., 2010, On the natural of two independently heated spaces connected by a low-level opening. Building and Environment 45, 586-595.
    [10] 李俊賢, 2009, 單一及兩連接建築空間自然對流之研究。台灣科技大學碩士論文。
    [11] 黃俊傑, 2010, 兩連接房間之浮力通風機制研究及應用浮力通風設計於實體建築環境。台灣科技大學碩士論文。
    [12] Chu, C.R., Chiu, Y.H. & Wang, Y.W., 2010, An experimental study of wind-driven cross ventilation in partitioned building. Building and Environment 45, 2273-2279.
    [13] Chu, C.R. & Wang, Y.W., 2010, The loss factors of building openings for wind-driven ventilation. Energy and Buildings 42, 667-673.
    [14] Lin, Y.J.P. & Linden, P.F., 2005, A model for an under floor air
    distribution system. Energy and Buildings 37, 399-409.
    [15] Bauman, F. & Webster, T., 2001, Outlook for underfloor air distribution. ASHRAE Journal, 18-27.
    [16] Webster, T., Bauman, F., Ress, J. & Shi, M., 2002, Thermal stratification performance of underfloor air distribution (UFAD) systems. Proceedings of Indoor Air 2002, Monterey, CA, June. 4, 260-265.
    [17] Liu, Q. & Linden, P.F., 2008, The EnergyPlus UFAD Module. Proceedings of SimBuild 2008, Berkeley, CA, July., 23-28.
    [18] Batchelor, G.K., 1954, Heat convection and buoyancy effects in fluids. Quarterly Journal of the Royal Meteorological Society, Volume 80., 339-358.
    [19] Alajim, A. & El-Amer, W., 2010, Saving energy by using underfloor-air-distribution (UFAD) system in commercial buildings. Energy Conversion and Management 51 (8), 1637-1642.
    [20] Bauman, F. & Webster, T., 2007, Cooling airflow design calculations for UFAD. ASHRAE Journal, 36-44.
    [21] Li, R., Sekhar, S.C. & Melikov, A.K., 2010, Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate.Building and Environment 45, 1906-1913.

    QR CODE