簡易檢索 / 詳目顯示

研究生: 張敬昌
Ching-Chang Chang
論文名稱: 低降伏強度鋼接合板之耐震行為
Seismic Resistant Behavior of Low Yield Point Steel Gusset Plate
指導教授: 陳生金
Sheng-Jin Chen
口試委員: 陳舜田
none
陳正誠
none
許協隆
none
陳誠直
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 240
中文關鍵詞: 斜撐構架接合板低降伏強度鋼獨立側向位移束制裝置槽型束制裝置耐震設計
外文關鍵詞: Braced frame, Gusset plate, Low yield point steel, Independent lateral deformation restraining devi, Slot-type Restrainer, Seismic resistant design
相關次數: 點閱:206下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 斜撐構架之彈性勁度高、強度高而為主要之抗震結構系統之ㄧ,斜撐為主要的側向力傳遞路徑,其中扮演斜撐與梁,柱之間應力傳遞功能的接合板,其重要行性不言而喻。
    目前耐震韌性設計選擇弱斜撐、強接合的強度等級規劃原則。據此設計的特殊同心斜撐系統;大地震時最先發生的極限模式為受壓斜撐挫屈,斜撐挫屈後的強度與勁度急遽衰減,維持系統穩定所需之強度、勁度與韌性必須由受拉斜撐與SMRF提供,斜撐強度與勁度衰減除降低耐震消能能力,並導致先發生斜撐挫屈的樓層較易形成弱層而不利於耐震安全。斜撐挫屈同時產生巨大面外變形而影響外觀與使用性;也造成使用者對建築物之安全產生疑慮,
    降伏是鋼結構中最理想的破壞模式,本論文以低降伏鋼接合板為研究對象,利用低降伏鋼具有低降伏強度、低降伏比與高變形能力的特性,設定斜撐構架中接合板降伏為最先發生的極限狀態,由分析與試驗結果顯示,低降伏鋼接合板於反復載重下;受拉、壓時可達到降伏與非彈性挫屈而具有穩定的強度與消能能力,如作為強斜撐、弱接合構架系統中之消能構件,可以避免或延緩斜撐發生挫屈,本文並據此提供相關設計準則以供工程實務設計之用。
    此外低降伏鋼接合板於受壓降伏後仍會產生挫屈,傳統與接合板電焊的加勁板可以避免自由邊局部挫屈提升壓力強度與挫屈後性能;但仍無法避免整體側向挫屈,本文提出獨立側向束制的概念,接合板發生側向變形前,獨立側向束制裝置與接合板之間無任何互制作用,接合板發生側向變形後,獨立側向位移束制裝置受到推擠,形成反力同時提供接合板側向支撐,而達到限制接合板整體與部分局部側向變形之功能,故可提昇接合板受壓性能;又不致對接合板拉力強度、非線性變形與面外轉動能力造成太大影響。本文以分析與試驗方式驗證其中一種槽型束制裝置之功能,使用後之低降伏鋼接合板具有拉、壓對稱、飽滿的載重變形曲線,接合板局部非彈性挫屈後仍能維持穩定的強度與正向勁度,使斜撐兩端接合板均衡提供耐震消能之功能。而使用槽型束制裝置於一般鋼接合板時可確保接合板具有可靠的拉、壓強度,設計時可以使用明確的有效長度係數。反復載重作用下,接合板壓力強度不致因側向變形逐漸增加而衰減;進而發生不預期的接合破壞模式,故亦適用於BRB等一般斜撐之接合板使用。


    Concentrically braced frames have been used widely in the seismic-resistant design of steel building structures. During earthquake excitation, the braces of the concentrically braced frame are subjected to recursive tensile and compressive forces. The compressive strength of the brace is usually less than its tensile strength because of the buckling of the brace, and this may degenerate the seismic resistance capacity of the braced frame. In this reported research, an alternative design concept that adopts the weak gusset plate–strong brace is examined. The gusset plate is designed to yield prior to the buckling of the brace. Low yield point (LYP) steel is selected for the gusset plate. The LYP steel possesses low yield strength and high elongation capacity. A series of analytical and experimental studies were carried out to examine the LYP steel gusset plates under monotonic and cyclic loads respectively. The LYP steel gusset plates exhibit better hysterisis characteristics than traditional gussets. Slot-Type restrainer is a kind of independent lateral deformation restraining devices invented by the author. It is found that adding slot-type restrainers (STR) to the LYP steel gusset plate greatly enhances the seismic resistance of the gusset plate. The proposed LYP steel gusset plate with an STR is able to provide similar strengths under tensile and compressive loads. The energy dissipation capacity of the gusset plate is also increased substantially. Based on this study, suggestions are made for the design of LYP gusset plates. Besides, the compressive strength and deformation capacity of the gusset plates with STR devices are much higher and more reliable than that of the traditional gussets, the STR can be also applied to the gusset plate of BRB to prevent unexpected connection failure mode.

    摘要 viii ABSTRACT x 誌謝 xii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 1.3 文獻回顧 6 (A)Whitmore 7 (B)Astaneh-Asl, Goel and Hanson 7 (C)Thornton 9 (D)Bjorhovde and Chakrabarti 9 (E)Cheng et al. 10 (F)Roeder et al. 14 (G)Works on LYP Gusset Plate 18 1.4 研究方法與內容 20 第二章 特殊同心斜撐構架系統 23 2.1 前言 23 2.2 特殊同心斜撐設計之規範需求 23 2.3 特殊同心斜撐設計之強度規劃 31 2.4 低降伏鋼弱接合板之設計考量 35 2.4.1 低降伏鋼基本性質 35 2.4.2 低降伏鋼弱接合板之耐震設計考量 37 第三章 接合板有限元素分析 39 3.1 分析使用軟體 39 3.2 有限元素分析模型 41 3.2.1 基本幾何模型 41 3.2.2 初始變位設定 49 3.2.3 節點載重(變形)設定 50 3.2.4 等值應力應變評估指標 51 3.2.5 分析模型標稱強度 55 3.3 分析結果 57 3.3.1 A572 Gr.50與LYP 100接合板之分析比較 57 3.3.2 不同加勁形式接合板之分析比較 63 3.3.3 槽型束制裝置分析結果 65 3.3.4 不同尺寸與斜撐接合角度之接合板分析結果 66 3.4 分析結論 67 第四章 反復載重試驗 71 4.1 概論 71 4.2 試體設計 71 4.2.1 試體尺寸規劃 71 4.2.2 試體設計強度 74 4.3 試驗裝置 79 4.4 輔助量測裝置與資料收集系統 80 4.4.1 輔助量測裝置 80 4.4.2 資料擷取系統 80 4.4.3 載重位移歷時 81 4.5 接合板試驗結果 82 4.5.1 試體E8t 82 4.5.2 試體E6t 83 4.5.3 試體E4t 84 4.5.4 試體E2t 85 4.5.5 試體E0t 85 4.5.6 試體E8tS1 86 4.5.7 試體E8tSTR_LYP 87 4.5.8 試體E8tSTR_DP 88 4.5.9 試體E8tSTR 88 4.5.10 試體E6tSTR 89 4.5.11 試體E4tSTR 90 4.5.12 試體E2tSTR 91 4.6 試驗結果討論 92 4.6.1 破壞模式 92 4.6.2 未加勁接合板試驗結果比較 95 4.6.3 E8t加勁、設置槽型束制(STR)前後比較 99 4.6.4 設置槽型束制(STR)前後比較 103 第五章 低降伏鋼接合板設計建議 105 5.1 彈性設計階段 105 5.2 耐震設計階段 107 5.3 槽形束制裝置之設計建議 111 第六章 結論與建議 114 6.1 結論 114 6.2 建議 119 參考文獻 120 作者簡歷 209

    1.Whitmore, R.E., “Experimental investigation of stresses in gusset plates”, Bulletin No.16 Engineering Experiment Station, University of Tennessee, 1952.
    2.Astaneh-Asl, A., Goel, S.C. and Hanson, R.D., “Cyclic out-of-plane buckling of double-angle bracing. Journal of Structural Engineering”, 1985, 111:1135-1153.
    3.Astaneh-Asl, A., Seismic behavior and design of gusset plates. Steel TIPS Report, Structural Steel Education Council, Moraga, CA, December, 1998.
    4.AISC, Seismic Provisions for Structural Steel Buildings, American Institute of Steel Constructions, Chicago, 2005.
    5.AISC, Seismic Provisions for Structural Steel Buildings, American Institute of Steel Constructions, Chicago, 2010.
    6.Astaneh-Asl, A., Cochran, M.L. and Sabellli, R., Seismic detailing of gusset plates for special concentrically braced frames, behavior and design of gusset plates. Steel tips, Structural Steel Educational Council, 2006.
    7.Thornton, W.A., “Bracing connections for heavy construction”, Engineering Journal, AISC, Third Quarter, 1984.
    8.Brown V.L.S. Stability of gusseted connections in steel structures, Doctorial Dissertation, University of Delaware, 1988.
    9.Bjorhovde, R. and Chakrabarti, S.K., “Test of full size gusset plate connections”, Journal of Structural Engineering, ASCE, 1983, 111(3):667-684.
    10.Hu, S.Z., and Cheng, J.J.R., “Compressive Behavior of Gusset Plate Connections”, Structural Engineering Report No. 153, University of Alberta, 1987.
    11.Yam, M.C.H and Cheng, J.J.R., “Experimental Investigation of the Compressive Behavior of Gusset Plate Connections”, Structure Engineering Report NO.194, University of Alberta, 1993.
    12.Yam, M.C.H. and Cheng J.J.R., “Behavior and design of gusset plate connections in compression”, Journal of Constructional Steel Research; 2002, 58:1143-1159
    13.Cheng, J.J.R., Yam, M.C.H. and Hu, S.Z. “Elastic buckling strength of gusset plate connections”, Journal of Structural Engineering ASCE, 1994, 120(2):538-559.
    14.Rabinovitch, J.S. and Cheng, J.J.R., “Cyclic Behavior of Steel Gusset Plate Connections”, Structural Engineering Report No. 191, University of Alberta, 1993.
    15.Walbridge, S.S., Grondin, G.Y. and Cheng, J.J.R., “An analysis of the cyclic behaviour of steel gusset plate connections”, Sturctural Engineering Report No.225, Department of Civil Engineering, University of Alberta, Edmonton, Alberta, 1998.
    16.Cheng, J.J.R., Grondin, G.Y. and Yam, M.C.H., “Design and Behavior of Gusset Plate, Connections, Proceedings of Connection IV, 2000.
    17.Mullin, D.T. and Cheng, J.J.R., “Ductile Gusset Plates-Tests and Analyses”, NASCC 2004 Pacific Structural Steel Conference.
    18.Sheng, N., Yam, C.H. and Iu, V.P., “Analytical inverstigaion and design of the compressive strength of steel gusset plate connections”, Journal of Constructional Steel Research, 2002, 58:1473-1493.
    19.Roeder, C.W., Lehman, D.E., Johnson, S., Herman, D. and Yoo, J.H., “Seismic performance of SCBF braced frame gusset plate connections”, 4th International Conference on Earthquake Engineering, 2006, paper No.80.
    20.Roeder, C.W., Lehman, D.E., Johnson, S. and Herman, D. “Experimental Study of Seismic Performance of Braced frame Gusset Plate Connections”, PSSC Conference, 2007.
    21.Lehman, D.E., Roeder, C.W., Herman, D., Johnson, S. and Kotulka, B., “Improved Seismic Performance of Gusset Plate Connections”, ASCE ST. 2008, 134(6), 890-901
    22.Yoo, J.H., Roeder, C.W. and Lehman, D.E., “Analytical performance simulation of special concentrically braced frames, Analytical performance of special concentrically braced frames”, ASCE, ST. 2008, 134(6), 881-889
    23.Yoo, J.H., Lehman, D.E. and Roeder, C.W., “Influence of connection design parameters on the seismic performance of braced frame”, Journal of Constructional Research, 2008, 64(606-623)
    24.陳誠直、林南交、徐孟暉,「特殊同心斜撐構架之斜撐構材耐震性能研究(I)」,NSC97-2625-M-009-008,行政院國家科學委員會完整報告,2009。
    25.Wijesundara, K.K. Rassathi, G.A., Nascimbene,R. and Bolognini, D., “Seismic Performance of Brace-Beam-Column Connections in Concentrically Braced Frames”, Structural congress, ASCE, 2010, 930-942.
    26. Chambers, J.J. and Ernst, C.J., Brace frame gusset plate research—Phase I literature review, Univ. of Utah, Salt Lake City, 2005.
    27.Tsai, K.C., Hwang, Y.C., Weng, C.S., Shirai, T., and Nakamura, H., “Experimental Tests on Large Scale Buckling Restrained Braces and Frames.” Proceedings”, Passive Control Symposium, Tokyo Institute of Technology, Tokyo, Japan, 2002.
    28. Lopez, W.A., Gwie, D.S., Saunders, M., and Lauck, T.W., “Lessons Learned from Large-Scale Tests of Unbonded Braced Frame Subassemblage.” Proceedings, 71st Annual Convention, SEAOC, Sacramento, CA, 2002, 171-183.
    29. Aiken, I.D., Mahin, S.A., and Uriz, P., “Large Scale Testing of Buckling-Restrained Braced Frames”, Proceedings, Passive Control Symposium, Tokyo Institute of Technology, Tokyo, Japan, 2002.
    30. Uang, C.M. and Nakashima, M., Chapter 16 “Steel Buckling-Restrained Braced Frames”, Earthquake Engineering: Recent Advances and Applications. Y. Bozorgnia and V. Bertero, eds. CRC Press, 2003.
    31.Tsai, K.C. and Hsiao, P.C., “Pseudo-dynamic test of a full-scale CFT/BRB frame—Part II: Seismic performance of buckling-restrained braces and connections”, Earthquake Engineering and Structural Dynamics, 2008, 37, 1099–1115.
    32.Saeki, E., Sugisawa. M., Yamaguchi, T., and Wada, A.,“Mechanical Properties of Low Yield Point Steels”, J. Materials in Civil Eng. ASCE, Vol. 10, No. 3, 1998, 143-152.
    33.Chen, S. J., and Kuo, C.L., “Experimental study of vierendeel frames with LYP steel panels.”, International Journal of Steel Structures, 2004 , 4(4), 179-186
    34.Kondo I., Matuzawa T, Sakakibara S, and Sugino H. “Design of RC high rise building using column type low yield strength steel damper”, Symposium of passive control structure, Tokyo Institute of Technology, Yokohama, 2001 ,219-226.
    35.Chen, S.J., and Jhang, C., “Cyclic behavior of low yield point steel shear walls.”, Thin-Walled Structures, 2006 , 44, 730-738.
    36.江韋霆,低降伏強度鋼接合板之行為,國立台灣科技大學工程研究所碩士論文,2008.
    37.游鎮安,低降伏強度鋼接合板之受壓行為,國立台灣科技大學工程研究所碩士論文,2009.
    38.Chen, W.F., and Han, D. J., Plasticity for Structural Engineers, Springer-Verlag, 1991.
    39.ECCS, Recommended Testing Procedure for Assessing the Behaviour of Steel Elements under Cyclic Loads, European Convention for Constructional Steelwork, 1986.

    QR CODE