簡易檢索 / 詳目顯示

研究生: 莊惠婷
Hui-Ting Chuang
論文名稱: 新型複合式風扇以及流線形鰭片散熱座之數值與實驗整合研究
An Integrated Numerical and Experimental Study of the Novel Complex Fan and Streamlined Heat Sink Assembly
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳恩宗
En-Tsung Chen
陳呈芳
none
蔡博章
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 中文
論文頁數: 203
中文關鍵詞: 風扇流線形鰭片
外文關鍵詞: Fan, Sink, Streamline
相關次數: 點閱:294下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    由於筆記型電腦之空間限制,加上內部電子元件之密集排列,使得CPU所釋出的熱量更難以被排出系統外,因此本研究開發一款結合離心扇之高壓及橫流扇之低噪特性的複合式風扇,其大小為60×60×15 mm3,並以數值模擬方法來觀察分析各參數對風扇性能之影響,再加以實驗量測作驗證。最後再依據風扇之出口流線方向來設計流線形鰭片散熱座,以提高整體散熱模組之效能。複合風扇之幾何參數的改變包含了進風口直徑、背板型式、舌部間隙、葉輪高度及遮蔽效應等,其中以改變葉輪高度對於風扇性能之提升有最佳之成效,流量較原始設計提升了10.9 % (5.3CFM),靜壓則增加13.5 % (8.48mm-Aq)。此外,由實驗與模擬之比對結果,可以看到兩者均呈現相同之趨勢,因此證實數值模擬之方法的確有其準確性。在散熱座方面,除了依據風扇出口流場來設計流線型鰭片散熱座外,再設計一款等散熱面積的直板型鰭片散熱座以作為對照組。實驗結果顯示流線型之熱阻值為1.154℃/W,而直板型為1.228℃/W且溫度較流線型高了2℃,結果證實流線型鰭片確實比傳統直板型鰭片有較佳之散熱效果。


    Abstract
    A streamlined heat sink assembly, which consists of the cooling fan and the streamlined fins, is designed simultaneously for meeting the thermal task of laptop computers in this research. At first, a systematic scheme including CFD simulation, mockup fabrication, and experimental verification, is established to generate a complex fan. This novel blower (60×60×15mm3), featured with the characteristics from both centrifugal fan and cross-flow fan, provides a sufficient airflow with high-pressure rise under the space limitation of notebooks. Moreover, a combined effort from numerical simulation and experimental verification is executed to perform the parametric study on the geometric variables for obtaining an optimum fan design. The parameters considered here include inlet diameter, shape of rear wall, tongue clearance, throat gap, and the height of rotor. In additions, prototypes are made by CNC machine and tested to serve as references for numerical verification. This parametric study indicates that increasing the rotor height is the key factor to enhance the fan aerodynamic performance. Also, experimental results verify that the optimum fan design operating at 3,000 rpm delivers 5.3-CFM airflow with 8.48mm-Aq static-pressure.
    Thereafter, to match the flow pattern appropriately and minimize the resistance to the passing airflow, the streamlined fin geometry is generated with the aids of the detailed, numerical flow visualization at the fan outlet. Under the same operating conditions, experimental outcome shows that this strteamlined fin geometry yields a slightly better thermal resistance (1.154℃/W) compared to the traditional vertical fin (1.228℃/W), which represents a reduction of 2℃ on CPU case temperature. In conclusion, this new design approach, which generates the new cooling fan type and fin simultaneously, offers a reliable alternative to enhance the thermal performance of heat sink assembly successfully for meeting the thermal challenge of the high-performance notebooks.

    目 錄 中文摘要.........................................I 英文摘要.........................................II 誌謝.............................................IV 目錄.............................................V 圖索引...........................................VIII 表索引...........................................XIII 符號索引.........................................XV 第一章 緒論.......................................1 1.1 前言........................................1 1.2 文獻回顧....................................6 1.2.1 離心扇................................7 1.2.2 橫流扇................................9 1.2.3 散熱座................................15 1.3 研究動機與方法..............................18 第二章 複合式風扇設計.............................22 2.1 複合扇設計..................................22 2.1.1 葉輪設計..............................22 2.1.2 外框設計..............................25 2.2 複合扇之網格建立............................26 第三章 數值方法...................................36 3.1 流場統御方程式..............................36 3.2 紊流模式....................................38 3.3 數值方法....................................40 3.3.1 離散法則..............................40 3.3.2 上風差分法............................41 3.3.3 SIMPLE解法理論........................43 3.4 數值邊界件設定..............................46 第四章 實驗設備及儀器.............................49 4.1 風扇性能量測設備............................49 4.2 噪音量測設備與環境..........................52 4.2.1 聲壓量測系統..........................52 4.2.2 量測環境..............................52 4.3 散熱器性能量測設備與環境....................54 4.3.1 散熱器性能量測設備....................54 4.3.2 恆溫環境系統..........................57 第五章 複合扇之數值模擬分析.......................60 5.1 原始設計之流場分析..........................60 5.1.1 Z方向剖面.............................62 5.1.2 θ方向剖面............................69 5.2 不同入風口直徑..............................78 5.2.1 Z方向剖面.............................79 5.2.2 θ方向剖面............................79 5.3 背板型式之變化..............................87 5.3.1 Z方向剖面.............................90 5.3.2 θ方向剖面............................104 5.4 變更舌部間隙................................108 5.4.1 Z方向剖面.............................108 5.4.2 θ方向剖面............................114 5.5 變更葉輪高度................................114 5.5.1 Z方向剖面.............................119 5.5.2 θ方向剖面............................119 5.6 複合扇之遮蔽效應............................119 5.6.1 θ方向剖面............................126 5.6.2 Z方向剖面.............................126 第六章 複合扇之實驗結果與討論.....................136 6.1 變更入風口直徑..............................138 6.2 變更背板型式................................141 6.3 變更舌部間隙................................144 6.4 變更葉輪高度................................147 6.5 風扇遮蔽效應................................150 第七章 整體散熱模組之實驗結果.....................157 7.1 流線型鰭片設計..............................157 7.2 散熱座之熱阻實驗............................163 7.2.1 不同鰭片外型之散熱座熱阻實驗..........168 7.2.2 不同加工方式之直板型散熱座熱阻實驗....168 第八章 結論與建議.................................176 8.1 結論........................................176 8.2 建議........................................178 參考文獻..........................................180 作者簡介..........................................186

    參考文獻
    [1] Eck, I. B., “Fans: Design and Operation of Centrifugal, Axial-Flow and Cross-Flow Fans”, Pergamon Press, New York, 1973.
    [2] STAR-CD, Version 3.15, Methodology, 2001.
    [3] Raj, D. and Swim, W. B., ”Measurements of the Mean Flow Velocity and Velocity Fluctuations at the Exit of a F-C Centrifugal Fan Rotor”, Journal of Engineering for Power, Vol. 103, pp. 393-399, 1981.
    [4] Lin, S. C., “A Novel F-C Centrifugal Fan Design for Improved Performance”, Department of Mechanical Engineering, Technical Report, Tennessee Technological University, 1982.
    [5] 吳慶財,“前傾式離心扇之實驗設計”,國立台灣工業技術學院機 械工程技術研究所碩士論文,1993年。
    [6] Morinushi, K., “The Influence of Geometric Parameters on F. C. Centrifugal Fan Noise,” Journal of Vibration, Acoustics, Stress and Reliability in Design, Vol. 109, pp. 227-234, 1987.
    [7] Lui, C. H., Vafidis, C., and Whitelaw, J. H. “Flow Characteristics of A Centrifugal Pump,” ASME Journal of Fluids Engineering, Vol. 116, pp. 303-309, 1994.
    [8] Huang, J., Yin, M., and Yao, X. J., “Effects of Concealed Motor’s Shape on Performance of Forward Multi-Blade Centrifugal Fans,” J. of Shanghai Jiaotong University, Vol. 35, No. 8, pp. 1196-1199, 2001.
    [9] 許宏祺,“Pentium 4筆記型電腦冷卻風扇之實驗研究”,國立台灣
    科技大學機械工程技術研究所碩士論文,2001年。
    [10] Neise, W., “Noise Reduction in Centrifugal Fans: A Literature Survey”, Journal of Sound and Vibration, Vol. 45, No. 3, pp. 375-403, 1976.
    [11] Neise, W., “Review of Noise Reduction Methods for Centrifugal Fans”, Journal of Engineering for Industry, Vol. 104, pp. 151-161, 1982.
    [12] Mortier, P., DRP 146464, 1892.
    [13] Darlin, DPR 471551, 1929.
    [14] Murata, S. and Nisnihara, K., “An Experimental of Cross Flow Fan- 1st Report, Effects of Housing Geometry on the Fan Performance ,” Bulletin of the JSME, Vol. 19, pp. 314-321, 1976.
    [15] Tanaka, S. and Murata, S., “Scale Effects in Cross Flow Fans (Effects of Fan Dimensions on Performance Curves)”, JSME, International Journal Series, Vol. 37, No. 4, pp. 844-852, 1994.
    [16] Matsuki , K., Shinobu, Y., Takushima, A., and Tanaka, S., “Experimental Study of Internal Flow of a Room Air Conditioner Incorporating a Cross Flow Fan,” ASHARE Transactions, Vol. 94, Part 1, pp. 330-364, 1994.
    [17] 林進坤,“風道舌部幾何形狀對橫流風扇性能曲線與噪音的影響”, 國立台灣大學機械工程研究所碩士論文,1995年。
    [18] 李達生,“風機道舌部間隙、風道轉子型式、風道舌部構型以及 風道整體構型對線流扇風扇性能曲線與噪音之影響”,國立台灣大學機械工程研究所碩士論文,1996年。
    [19] Koo, H. M., “An Experimental Study of the Performance of Cross-Flow Fans in Room Air-Conditioning Systems”, Institute of Noise Control Engineering, Vol. 48, No. 2, pp. 41-47, 2000.
    [20] Lazzarotto, L., Lazzaretto, A., Macor, A., and Martegani, A. D., ‘‘On Cross-Flow Fan Similarity: Effect of Casing Shape,” ASME J. Fluids Eng., Vol. 123, pp. 1-9, 2001.
    [21] Lazzaretto, A., Toffolo, A., and Martegani, A. D., ‘‘A Systematic Experimental Approach to Cross-Flow Fan Design,’’ ASME J. Fluids Eng., Vol. 125, pp. 684–693, 2003.
    [22] Lazzaretto, A., ”A Criterion to Define Cross-Flow Fan Design Parameters,” ASME J. Fluids Eng., Vol. 125, pp. 680–683, 2003.
    [23] 施智達,“橫流冷卻風扇運用於筆記型電腦之實驗研究”,國立台 灣科技大學機械工程研究所碩士論文,2004年。
    [24] 侯宏奇、施陽正、劉正熙、江旭政,“舌部間隙與舌部開孔對分離式空調室內機橫流扇之效能提昇研究”,機械月刊,第二十九卷第十期,pp. 80-94,2003年。
    [25] Harper, D. R. and Brown, W. B., “Mathematical Equation for Heat Conduction in the Fins of Air Cooled Engines”, NACA Report, No. 158, 1922.
    [26] Sparrow, E. M., “Heat Transfer in Fluid Flows Which Do Not Follow the Contour of Boundary Walls”, Journal of Heat Transfer, Vol. 110, pp. 1145-1153, 1988.
    [27] Kei, S. L. and Roop L. M., “Effect of Tip Clearance and Fin Density on the Performance of Heat Sinks for VLSI Packages”, IEEE Trans., Components, Hybrids Manuf. Technology, Vol. 12, No. 4, 1989.
    [28] Lee, R. S., Huang, H. C., and Chen, W. Y., “A Thermal Characteristic Study of Extruded-Type Heat Sinks in Considering Air Flow Bypass Phenomenon”, Sixth IEEE Semi-Therm Symposium, pp. 95-102, 1990.
    [29] Wirtz, R. A., Chen, W. M., and Zhou, R. H., “Effect of Flow Bypass on the Performance of Longitudinal Fin Heat Sinks”, J. of Electronic Packaging, ASME, Vol. 116, pp. 206-211, 1994.
    [30] Chapman, C. L., Lee, S., and Schmidt, B. L., “Thermal Performance of an Elliptical Pin Fin Heat Sink”, Tenth IEEE Semi-Therm Symposium, pp. 24-31, 1994.
    [31] 王志賓,“CPU鰭片散熱效益之研究”,國立成功大學工程科學研究所碩士論文,1995年。
    [32] 郭淑華,“溝槽式鰭片散熱效益之研究”,國立成功大學工程科學研究所碩士論文,1996年。

    [33] El-Sayed, S., Mohamed, S. M., Abdel-latif, A. M., and Abouda, A. E., “Investigation of Turbulent Heat Transfer and Fluid Flow in Longitudinal Rectangular - Fin Arrays of Different Geometries and Shrouded Fin Array”, Experimental Thermal and Fluid Science, Vol. 26, pp. 879-900, 2002.
    [34] 陳怡如,“筆記型電腦CPU不等間距散熱片之最佳化設計” ,國立台灣科技大學機械工程研究所碩士論文,2002年。
    [35] 邢雷鍾,“以流線為基礎之曲線型散熱片設計”,國立台灣科技大學機械工程研究所碩士論文,2003年。
    [36] 吳兌倩,“流線型鰭片散熱座數值與實驗之整合研究”,國立台灣科技大學機械工程研究所碩士論文,2004年。
    [37] 陳秋南,“側吹式散熱鰭片阻抗曲線之理論與實驗分析”,國立清華大學工程與系統學系研究所碩士論文,2004年。
    [38] Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat and Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
    [39] ANSI/AMCA Standard 210-99 (ANSI/ASHRAE 51-1999), “Laboratory Method of Testing Fans for Aerodynamic Performance Rating”, Air Movement and Control Association, Inc., 1999.
    [40] CNS 8753, “Determination of Sound Power Level of Noises for Fan, Blower, and Compressors”, Chinese National Standard, 1982.
    [41] Bleier, Frank P., “Fan Handbook, Selection, Application, and Design”, McGraw Hill, 1997.
    [42] Porter, A. M., and Markland, E., “A Study of the Cross Flow Fan”, J. Mech. Eng. Sci., Vol. 12, No. 6, 1970.
    [43] ISO 3745, “Acoustics -- Determination of Sound Power Levels of Noise Sources Using Sound Pressure -- Precision Methods for Anechoic and Hemi-Anechoic Rooms”, 2003.
    [44] Yen, C. W., “Thermal Challenge in Desktop”, Desktop & Mobile Thermal Simulation Seminar, Taipei, Taiwan, pp. 2-5, Jul. 28, 2002.
    [45] 曹芳海,“送風機氣動性能、噪音與耐溫測試技術探討”,電機月刊,第十三卷第五期,pp. 196-202,1994年。
    [46] “Datasheet --Intel Pentium M Processor with 2-MB L2 Cache and 533-MHz Front Side Bus”, Intel Reference Number 305262-001, January 2005.

    QR CODE